

© Chris Lacey / Aston University, 2000 - 2001.
To contact the author, see www.cslacey.co.uk/project

�

�

�

�

�

�

�

����������	
��
��

���������
��	�

��	�
����	����
������	
���������

Christopher S. Lacey

MEng Electronic Systems Engineering

with Management Studies

Supervisor: Mr. P J Miller

Electronic Engineering

School of Engineering and Applied Science

Aston University

Submitted: May 2001

E-commerce Site with Smartcard Payment Mechanism Acknowledgements

 Page 1

��������������	�

The author wishes to express his gratitude to the following:

Mr. P J Miller and Dr. J A R Williams of the School of Engineering and Applied Science,

Aston University, for providing ongoing advice and assistance for the duration of the

project.

Mr. J Ward and Mr. P Trevis also of the School of Engineering and Applied Science,

Aston University, for providing technical support.

Hitachi Smart Commerce division for the donation of smartcard equipment and

development software; specifically, Mr. J Griffiths for providing technical support and to

Mr. R Evans for arranging sponsorship.

Mr. M Meyerstein of BT Cellnet for providing information and source code with respect to

Mondex value transfer.

E-commerce Site with Smartcard Payment Mechanism Contents

 Page 2

���	��	�

Acknowledgements ..1

Contents ..2

Table of Figures ...6

1 Synopsis...7

2 Introduction..8

2.1 Context..8

2.1.1 Applicability of Smartcard Technology ..9

2.2 Requirements ..10

2.2.1 Electronic Cash..10

2.2.2 Personal Profile..10

2.2.3 E-Commerce Web Site ..11

2.3 Overview of Report ..11

3 Server-Side Design Issues..12

3.1 Choice of Web Server...12

3.2 Server-Side Processing ...12

3.3 Maintaining State..13

3.4 Database..15

3.4.1 Database Transactions ...15

3.5 Encrypted Communication ...16

3.5.1 Public and Private Keys (Asymmetric Cryptography)16

3.5.2 Digital Certificates...17

3.5.3 SSL and Certificate Authentication ...17

4 Server Implementation..18

4.1 ASP Syntax ...18

4.1.1 Code Convention ...18

4.2 Separation of Code and Presentation ..18

4.2.1 The need for inline code embedding..18

4.2.2 Function Libraries..19

4.2.3 User Redirects..19

E-commerce Site with Smartcard Payment Mechanism Contents

 Page 3

4.3 Database Structure ..21

4.3.1 Relationships..21

4.3.2 Tables...21

4.3.3 Queries ...22

4.4 Server-Side Java Application..23

4.5 SSL..24

5 Client-Side Design Issues...25

5.1 Hypertext Markup Language (HTML) ...25

5.1.1 Frames..26

5.1.2 Forms ...27

5.1.3 Client-side Scripting ..28

5.1.4 Dynamic HTML ..29

5.2 Cascading Style Sheets (CSS) ..29

5.3 Client-Side Java Applet ..30

6 Client Implementation...31

6.1 Web User Interface ...31

6.1.1 SmartCentre Site..32

6.1.2 Aston SmartMarket Site...33

6.2 Client-Side Java Applet ..35

6.2.1 Interface Methods ..35

6.2.2 Netscape Navigator and Internet Explorer Security Models36

6.2.3 Drivers for Smartcard Readers ..36

7 Smartcard Design Issues ...37

7.1 Choice of Operating System ...37

7.2 Card-Client Communication...37

7.2.1 Command APDU’s..37

7.2.2 Response APDU’s ...38

7.2.3 APDU Cases ..38

8 Smartcard Implementation...38

8.1 Feature Set ..38

8.1.1 PIN Requests..38

8.2 Developmental Process...38

E-commerce Site with Smartcard Payment Mechanism Contents

 Page 4

9 Cryptographic Challenge and Response Cycle ...38

9.1 Requirements ..38

9.2 Implemented Solution...38

9.3 Debit Procedure ..38

9.4 Credit Procedure ...38

9.5 Tolerance to Network Failures..38

9.6 Tolerance to System Interruptions..38

9.7 Security ...38

10 Evaluation...38

10.1 Project Costing..38

10.1 Possible Future Development ...38

11 Conclusion ..38

References...38

Bibliography...38

Appendix 1: System Overview...38

Appendix 2: Public Explanatory Material ...38

Appendix 2.1: Introduction to SmartID and SmartWallet ..38

Appendix 2.2: Privacy Statement for SmartMarket..38

Appendix 3: Server Installation Instructions...38

Appendix 3.1: Implementing SSL ..38

Appendix 3.1.1 Generation of Server Certificate ...38

Appendix 3.1.2: Enabling SSL ...38

Appendix 4: Client Installation Instructions..38

Appendix 4.1: Drivers for Smartcard Reader ...38

Appendix 4.2: Internet Explorer ...38

Appendix 4.3: Netscape Navigator ...38

E-commerce Site with Smartcard Payment Mechanism Contents

 Page 5

Appendix 5: Server Code ...38

Appendix 5.1: ASP Examples ..38

Appendix 5.1.1: Library for calling cryptographic functions (sw_lib.asp)38

Appendix 5.1.2: Server-side validation for registering a user (adduser.asp)..............38

Appendix 5.1.3: Validating card’s debit response (scauthorise.asp)..........................38

Appendix 5.2: Server-Side Java Application..38

Appendix 6: Client Code ..38

Appendix 6.1: HTML and ECMAScript Examples..38

Appendix 6.1.1: Using client-side Java applet with forms (configsid.html)38

Appendix 6.1.2: Client-side validation of forms (setpin.html)...................................38

Appendix 6.2: CSS Example (aston.css) ..38

Appendix 6.3: Client-Side Java Applet ..38

Appendix 6.3.1: SmartID class ...38

Appendix 6.3.2: MessageFrame class...38

Appendix 6.3.3: PinRequest Class..38

Appendix 7: Smartcard Code ..38

E-commerce Site with Smartcard Payment Mechanism Table of Figures

 Page 6

�����
��
 ��!���

Figure 4.1: Pseudocode indicating use of inline scripting ...18

Figure 4.2: ASP code showing use of function libraries and server-side includes..............19

Figure 4.3: Extract from db_lib database access library..19

Figure 4.4: Extract from adduser.asp showing use of user redirects20

Figure 4.5: Database structure ...21

Figure 4.6: ASP code to call ‘preemptResponse’ method in Java application23

Figure 5.1: Main frame structure ...26

Figure 5.2: Browse/search products frame structure ..27

Figure 6.1: Form used to configure personal profile ...32

Figure 6.2: Aston SmartMarket front page..34

Figure 6.3: Pages to search product database and view results ...34

Figure 7.1: ISO 7816-4 Command APDU structure..37

Figure 7.2: ISO 7816-4 Response APDU structure...38

Figure 8.1: Implemented smartcard feature set ...38

Figure 9.1: Debit communication sequence ...38

Figure 9.2: Credit communication sequence ..38

Figure 9.3: Debit test site..38

Figure 9.4: Credit test site...38

E-commerce Site with Smartcard Payment Mechanism 1 Synopsis

 Page 7

"

��������

In an attempt to provide a solution to the problem of using credit cards for payment over

the Internet, the objective of this project was to implement a fully functioning E-commerce

site which utilised a smartcard mechanism for payment..

Due to the fact that the creators of existing smartcard wallets appear reluctant to divulge

their full specifications, a smartcard-based electronic cash system has been developed from

scratch, providing means for instantaneous, anonymous transfer of value across an insecure

network, such as the Internet. Analysis and test of the system have suggested the

implementation to be secure.

Additionally, smartcard technology has been employed to solve another perceived problem

with business-to-consumer E-commerce sites: that of the need for repetitive personal data

entry. A profile system has been created which permits storage of personal data in one

location (the smartcard), and rapid completion of HTML forms by automatic retrieval of

this information.

An E-commerce site has been created with which these two systems have been

successfully integrated, indicating that smartcard technology does provide a feasible means

for addressing the problems identified. However, complications identified at the client side

suggest that widespread adoption of the technology will not occur until suitable standards

are developed and adhered to.

E-commerce Site with Smartcard Payment Mechanism 2 Introduction

 Page 8

#

$�	���!�	���

#%"

���	�&	

The explosive growth of the Internet has caused a revolution in the manner in which

businesses and consumers conduct commercial exchanges. E-Commerce is currently a

major growth industry, and the number of transactions carried out online is escalating

exponentially.

The advantages provided by Internet commerce are self-evident, and explain the

enthusiasm shared by companies and customers for trading in this manner. For the

supplier, there is greater potential to compete on a global scale, and cost savings can be

attained in terms of staff and real estate by removing the need for public-facing premises.

For the consumer, a means is provided to browse and search for products, and compare the

prices of different suppliers, more quickly and easily than was previously possible.

However, some problems have arisen with respect to business-to-consumer (“B2C”)

systems, which to this day have prevented them from realising their full potential.

Firstly, there is a general reluctance amongst the public to transfer their credit or debit card

number across the Internet, for fear of it being intercepted and unlawfully misused. The

use of encrypted communication (via SSLa) has gone a long way to alleviate this fear, but

it does still remain an issue: a significant number of potential purchases are lost for this

reason.

Secondly, credit and debit cards are not ideally suited to purchasing many of the products

or services that are available, or could be made so. In many situations, a system more

resembling cash would be preferential - avoiding delays inherent within credit card

clearing systems, permitting micropayments (e.g. of a few pence) to be made for online

services, retaining customer anonymity and providing a means for the user to be aware of

his current balance at all times.

Finally, the tedious activity of repetitively entering personal information, such as shipping

address, for every transaction or site registration is disconcerting to many users. A

research study conducted by Jupiter Communications (NY) in 1999 indicated that more

a Secure Socket Layer

E-commerce Site with Smartcard Payment Mechanism 2 Introduction

 Page 9

than a quarter of users surveyed had abandoned a transaction solely due to the length or

complexity of the form which had to be completed.

Various solutions to these problems have been proposed, such as SETa and Web ‘Beanz’

for payments; and ‘Autocomplete’ and Microsoft Profile Assistant for completing forms.

However, each of these systems solves only one of the problems mentioned: SET, for

example, avoids the need for transmission of credit card information, but still uses such a

card as the ultimate means for payment. In addition, most solutions tend to be tied to a

user’s own computer, preventing them from being used effectively in Internet cafés or on

other machines.

2.1.1 Applicability of Smartcard Technology

Smartcards have two fundamental capabilities - that of data storage and processing power.

In terms of the former, they provide advantages in terms of their portability and - more

uniquely - the fact that the data stored upon them can be made tamper-proof. Physical

security of the cards provides good protection against attempts to read or modify the

contents of memory by external means. Data can therefore only be accessed via the

interface defined by the program resident on the card, meaning that a system could be

created whereby information is not released from the card unless a correct PINb is entered

beforehand, for example.

The processing power of the card is of particular use for cryptographic and other sensitive

operations, where - for example - digital signatures can be generated and validated without

a user’s private key ever leaving the card.

Smartcards’ tamper-proof data storage, and their capability to perform cryptographic

operations, therefore appeared to provide a feasible means for addressing the problems

previously described: firstly, by allowing user profile information to be stored and quickly

transferred by insertion of the card into a smartcard reader; secondly, by providing a secure

means for value to be stored and transferred by means of a trusted applet resident on the

card.

a Secure Electronic Transactions standard
b Personal Identification Number

E-commerce Site with Smartcard Payment Mechanism 2 Introduction

 Page 10

#%#

'�(!������	�

The aim of this project was to design and create a fully operational E-commerce site which

would make use of smartcard technology in order to attempt to provide a solution to the

problems previously discussed. Users would therefore be required to have a suitable

smartcard reader attached to their computer in order to make use of this.

2.2.1 Electronic Cash

In order to represent “real” cash most accurately, there is a requirement for (i) value to be

stored on the smartcard only, and not recorded elsewhere (thus maintaining anonymity).

Clearly, therefore, a card applet needs to be created which will (ii) prevent users from

defrauding the system by increasing their balance without authorisation from the

card issuer; and (iii) prevent debits from being made without the user’s consent.

Finally, there needs to be a means for (iv) securely transferring value between the card

and a remote host, over an insecure network which is open to eavesdropping and

modification of the data being transferred.

It was initially the intention to use Mondex, a proven smartcard-based electronic cash

product, as the basis for value transfer within this project. However, Mondex

International, creators of the system, were unwilling to provide the protocol specifications

required for security reasons. Consequently, a suitable electronic cash system had to be

developed from scratch.

2.2.2 Personal Profile

The basic requirement was for the smartcard to (i) store textual information within a

number of profile “fields” and for a means to be provided for (ii) a web site to retrieve

this data.

Additionally, provision had to be made for a user to (iii) update his profile information

whenever necessary, and to (iv) specify preferences as to whether, and how often, a

PIN should be requested before sensitive information is released.

The objective to develop a personal profile was not part of the original project

specification. It was taken on at the request of Hitachi, providers of smartcard readers and

development software for the project.

E-commerce Site with Smartcard Payment Mechanism 2 Introduction

 Page 11

2.2.3 E-Commerce Web Site

The core functions provided by any E-commerce site are to (i) allow users to browse or

search within a database of items or services, (ii) select those required for purchase

and place into a virtual “shopping basket”, and (iii) “check out” by authorising value

transfer to the vendor.

Additionally, for this project, it was necessary to (iv) utilise the electronic cash and

personal profile systems previously described.

#%)

*�������
��
'����	

Three fundamental components to the overall system clearly emerge, namely Server,

Client and Smartcard. The following chapters deal with these individually: for each, a

Design Issues chapter describes and justifies the major conceptual decisions made, and an

Implementation chapter outlines key methods by which the design was realised.

The method by which value transfer was achieved is described separately in

9 Cryptographic Challenge and Response Cycle, as it involves the server, client and

smartcard equally, and cannot be satisfactorily described for each component in isolation.

The success of the project is then evaluated, and possibilities for future development

identified. Finally, conclusions are drawn from the findings made.

E-commerce Site with Smartcard Payment Mechanism 3 Server-Side Design Issues

 Page 12

)

�����������
������
$��!��

)%"

������
��
+��
������

Different permutations of operating system and web server software were assessed, and in

many cases evaluated through installation, test, and review of their accompanying

documentation.

UNIX servers tend to be highly regarded for their reliability and stability, hence initially

appeared to be an attractive option for deployment. However, at the time when this

assessment of alternatives was being conducted, Mondex was intended to be the means by

which payments would be made within the site, and it was therefore assumed that a

smartcard reader would be needed on the server in order to facilitate card-to-card value

transfers. The majority of such devices are supplied only with Windows drivers - UNIX

alternatives are generally slow to materialise and are usually unsupported - and as such the

decision was made to select Windows NT Server as the platform upon which the web

server should run.

The Apache HTTP Server and Microsoft’s Internet Information Server (IIS) were then

critically compared, the latter finally being selected due to the fact that its native scripting

language (ASPa) was unique in providing support for instantiation of Windows COMb

objects, thus permitting communication with the smartcard reader via vendor-supplied

components. Various modules providing ASP support for Apache were located and tested,

but these were found to possess incomplete feature sets - none of them providing COM

support.

)%#

�����������
����������

An E-commerce site obviously requires some degree of server-side processing over and

above simply relaying static content at the request of browsers - for example, supplying

pages which show products that match a user’s search criteria. The decision was made to

utilise IIS’s inline scripting capabilities to perform the majority of server-side processing,

as this technique uses the application’s memory space to process the scripts, draining fewer

a Active Server Pages
b Component Object Model

E-commerce Site with Smartcard Payment Mechanism 3 Server-Side Design Issues

 Page 13

resources than using CGIa, with which a new process needs to be created to serve every

separate page request.

IIS is capable of supporting a number of different scripting languages (VBScript and

JScriptb as standard, Perl and other alternatives by deployment of appropriate modules).

No one language appeared to offer any particular advantage, hence VBScript was chosen

solely because this appears to be the most common choice amongst users of ASP, and thus

more documentation and support is available for it.

)%)

����	������
�	�	�

The protocol via which web pages are requested and served (HTTPc) is stateless, in that

each page request is effectively an isolated event whereby a connection is maintained

between client and server for the transmission of a single file only. Navigating to a

particular page by entering its URLd into the address bar of a browser or by selecting a

hyperlink causes a TCPe connection to be made to port 80 of the appropriate host, followed

by an instruction of the form:

GET /filename.html HTTP/1.0

Assuming the file requested is available, the web server then responds by transmitting the

page back to the client, and the connection between the two machines is immediately

released.

The stateless nature of HTTP demands that consideration be given to how some form of

persistence be created within the system. Clearly, for an E-commerce site, it is desirable

for a user to move between several pages, browsing and searching for items, and adding

those which are required to a virtual “shopping basket”. It is obviously necessary for the

selections made to be retained for at least the duration of the user’s visit to the site, and

preferably also between successive visits.

Various extensions to HTTP, which are now mature and supported by the vast majority of

browsers, provide means to overcome this problem. The most established method is

a Common Gateway Interface
b Microsoft’s implementation of ECMAScript (Javascript)
c Hypertext Transfer Protocol
d Uniform Resource Locator
e Transmission Control Protocol

E-commerce Site with Smartcard Payment Mechanism 3 Server-Side Design Issues

 Page 14

known as HTTP Authentication, whereby the web server inserts the following headers into

its initial response to a page request:

WWW-Authenticate: Basic

HTTP/1.0 401 Unauthorized

Browsers supporting HTTP authentication will then prompt the user for a username and

password, cache this information, and retransmit it within the headers of every subsequent

page request to that site. Consequently, by observing the username and password

accompanying each page request, the server can ascertain which user is being served and

modify the contents of the information returned accordingly.

An alternative to this technique is to use cookies, which are small text files created by the

browser on the user’s system upon the request of the server. The information to be stored

within these files is sent to the client within the response HTTP headers, and this is then

retransmitted by the browser within the headers of every subsequent page request to the

same site. Consequently, by using cookies to store a unique identifier for a particular user,

page responses can be personalised by the server accordingly.

When cookies first came into existence (in Netscape Navigator 2.0), they were viewed

with suspicion by some users who regarded the act of text files being saved on their own

machines as a security threat. The fact that these files contain textual data which is

managed by the browser, only ever sent to the site which originally created it, and never

executed, has caused this attitude to be no longer widely held, and although users can still

choose to reject them, all browsers in common use today silently accept cookies by default.

In addition, creation of the concept of “session cookies” which exist in the browser

process’s volatile memory, and thus remain in existence only until the program is closed,

have served to provide a technique for providing persistence to which few are opposed.

In general, cookies are used much more widely than HTTP Authentication, and as such the

appearance of the browser’s login box is now rarely witnessed and can be disconcerting for

inexperienced users. In addition, because the manner in which the username and password

are requested is unique to each individual browser, it would not be possible to provide a

consistent mechanism for logging in using a smartcard should this method be employed for

user identification. Consequently, despite the small possibility of user rejection, it was

decided that the less controversial “session cookie” be used to provide login facilities to the

site, together with an explanation of the security issues involved.

E-commerce Site with Smartcard Payment Mechanism 3 Server-Side Design Issues

 Page 15

Additionally, it was decided to provide the option for creating a permanent cookie to

provide automatic login to the site.

)%,

��	�����

There was a clear need for the existence of a database on the server, which would contain

information relating to the products or services available for sale on the site (e.g.

description, price and stock information).

In addition, it was believed to be desirable for the database to be the location in which the

contents of users’ “shopping baskets” was held. It would be possible for the session cookie

created on the client’s machine to retain this information; however, because cookie data is

transmitted with every page request, use of a server-side database minimises the amount of

data being transferred, and thus the speed of response. Additionally, it permits the contents

of baskets to be remembered indefinitely (i.e. between visits).

A large number of different database products are available, all with their own particular

advantages and disadvantages. Assessment of which was the most suitable for an

E-commerce site would be dependent upon factors such as the expected server load, and a

detailed evaluation of alternatives was not considered to be within the scope or budget of

this project. Use of a standard query language and abstraction layer to connect to the

database (specifically, SQL via an ODBCa connection) was therefore deemed essential, so

that the underlying engine could be replaced should it become necessary (easing migration

to a heavy-duty Oracle database should server load escalate, for example).

3.4.1 Database Transactions

Certain operations that may need to be carried out on the database are comprised of a

number of separate actions - such as the process of checking out, where each product

purchased must be deleted from the user’s basket and a corresponding record made

elsewhere to authorise dispatch.

It is important to ensure that, in the event of an error or problem occurring on the server,

the entire operation would fail or succeed as a single unit (i.e. either all of the component

actions would be completed, or none of them). Such an operation is said to be atomic.

a Object Database Connection

E-commerce Site with Smartcard Payment Mechanism 3 Server-Side Design Issues

 Page 16

In order to achieve this requirement, it was decided to use transactional features within the

database whereby a transaction is commenced immediately before the first critical

operation and committed following the final one. Should any step in the transaction fail,

all other steps are automatically rolled back, thus preserving consistency of the data.

The database engine also ensures that partial results of incomplete operations are never

obtained by other concurrent processes (e.g. other ASP page requests) by locking the

relevant fields for the duration of the transaction. Due to the fact that transactions only

appear to be required for records and fields specific to individual users, no problems

should occur with the database being made unavailable to other users of the site.

)%-

�����	��
����!����	���

Communication via the Internet is inherently insecure, as data transferred over it is open to

eavesdropping at many different points. Consequently, there is a need for any system

which involves the transmission of sensitive information (such as credit card numbers) to

provide means for encrypting communication between server and client and to assure users

of the true identity of the site with which they are dealing, hence the rationale behind

deploying SSLa.

3.5.1 Public and Private Keys (Asymmetric Cryptogr aphy)

When used for encryption, public and private keys are analogous to padlocks and their

keys, whereby information can be encrypted using a public key (locked with a padlock)

such that it can only be decrypted using its associated private key (unlocked with its key).

Consequently, public keys can be widely distributed to enable anyone to encrypt

information in the knowledge that it can only be decrypted by the holder of the associated

private key.

Additionally, however, data encrypted using the private key can be decrypted by anyone in

possession of the associated public key. If meaningful information can be extracted using

the public key, one can be certain that only the holder of the private key could have

encrypted it initially (i.e. the origin of the data is assured). This technique forms the basis

for digital signature systems.

a Secure Socket Layer

E-commerce Site with Smartcard Payment Mechanism 3 Server-Side Design Issues

 Page 17

3.5.2 Digital Certificates

In order for asymmetric cryptography to be used effectively, it is necessary for the holder

of a public key to be certain that the key is in fact associated with the private key owned by

the intended recipient. Using techniques such as IP spoofing, it might be possible to

masquerade under the identity of another user or server and supply a different public key

which would allow unauthorised access to information encrypted with it.

In order for the true owner of a public key to be determined, Certification Authorities

(CA’s) such as Verisign and Thawte have been established to act as trusted third parties

which will verify the identity of a person or organisation before providing them with a

digital certificate. Such certificates are wrappers containing textual information

concerning the owner’s identity, together with the actual public key. The wrapper itself is

signed using the CA’s private key which gives anyone proof of its authenticity. The CAs’

public keys, required to verify certificates as being valid, are supplied as standard within

all common web browsers and web server software.

3.5.3 SSL and Certificate Authentication

SSL is a standard technique used for secure data exchange on the Internet and on private

networks. Typically, a web server will present a browser with its digital certificate which

will act as proof of its identity, and contain its public key using which data sent to it can be

encoded.

As Internet Information Server and the majority of mainstream browsers support SSL, the

decision was made to apply for a suitable digital certificate from a known CA, and to make

use of SSL for the transmission of address and credit card information to the server.

E-commerce Site with Smartcard Payment Mechanism 4 Server Implementation

 Page 18

,

������
$�������	�	���

Please refer to the accompanying CD-ROM to view the commented code and other files

created to implement the system (‘Web’ directory for ASP code, ‘Server’ directory for

Access database and Java application source).

,%"

���
���	�&

A description of ASP syntax and usage is not within the scope of this document. However,

the reader may benefit from knowing that directives are distinguished from standard

HTML code by being surrounded by <% and %> delimiters. In addition, the <!--# .. -->

tag is used for specifying for server-side includes.

4.1.1 Code Convention

Within this section, highlighted text will be used to distinguish server-side instructions

from HTML code, where necessary. Comments within code will be shown in green.

,%#

������	���
��
����
���
������	�	���

ASP inline scripting (where pre-processor instructions are embedded amongst standard

HTML tags) is not well suited to separating code from presentation information. However,

where possible, user redirects and function libraries were utilised to isolate significant code

blocks to “dedicated” script files.

4.2.1 The need for inline code embedding

In some situations, it was however essential to embed code in the middle of an HTML

page, as in the case of a product listing - illustrated by the following pseudocode:

Page header HTML: Title, Table header, etc.
FOR EACH Product that matches selection criteria
 New table row
 New table cell
 Print Product name
 New table cell
 Print Product price
NEXT Product
Page footer

Figure 4.1: Pseudocode indicating use of inline scripting

E-commerce Site with Smartcard Payment Mechanism 4 Server Implementation

 Page 19

4.2.2 Function Libraries

In order to minimise the code content of pages, and to reduce coding repetition, a number

of libraries were created containing related functions (e.g. those pertaining to database

access). These were included, when required, by use of server-side includes, as shown in

the following example:

<% @LANGUAGE = VBScript %>
<!--#include file="../std_lib.asp"-->
<!--#include file="../db_lib.asp"-->

<html>
<head>
<link rel="stylesheet" href="main.css">
</head>
<body>
<p>Current order total: <%=getBasketTotal() %></p>

etc...

Figure 4.2: ASP code showing use of function libraries and server-side includes

ASP does not support the concept of “libraries” as such; the #include directive simply

causes the contents of the referenced document to be placed at that point within the file.

Consequently, care had to be taken to avoid duplication of variable and function names

across multiple libraries, as should more than one ever be included in a document,

confusion would result. Suitably descriptive names were therefore used for functions and

“global” variables that might need to be referenced externally; and “local” variables were

prefixed with a common identifier (e.g. db_ for database variables), as shown in the

example below:

<%
Dim objConn, db_strConn, db_strQuery, objRS
Set objConn = Server.CreateObject("ADODB.Connection ")
db_strConn = "DSN=SmartMarket;Database=SmartMarket; UID=sa;PWD=;"
objConn.Open(db_strConn)

Function isEmptyRS(db_strQuery)
 Dim db_checkRS
 Set db_checkRS = objConn.Execute(db_strQuery)
 isEmptyRS = db_checkRS.EOF
 db_checkRS.Close
End Function

etc...

Figure 4.3: Extract from db_lib database access library

4.2.3 User Redirects

In many cases, the submission of a form to the server requires a considerable amount of

processing to be carried out before a simple page is returned indicating success or failure.

E-commerce Site with Smartcard Payment Mechanism 4 Server Implementation

 Page 20

As opposed to embedding HTML representing the user message within large amounts of

ASP code, these messages were created in separate pages, and HTTP redirect responses

sent to the client, causing it to request the appropriate “success” or “failure” page after

processing of the form was complete. For example, the following script is an extract from

the ASP script called on submission of the “Add new user” form:

'Check to see if user already exists in database
userExists = Not isEmptyRS("SELECT Username FROM Ac counts WHERE Usern ...

If Request("password") <> Request("password2") Then
 'Passwords do not match
 db_finalise()
 Response.Redirect("adduser_diffpass.asp" & urlAppe nd)

ElseIf username="" Or password="" Or forename="" Or surname="" Then
 'Essential field left blank
 db_finalise()
 Response.Redirect("adduser_incomplete.asp" & urlAp pend)

ElseIf userExists Then
 'User already exists
 db_finalise()
 Response.Redirect("adduser_exists.asp" & urlAppend)

Else
 'OK to insert user into database
 dbExecute("INSERT INTO Accounts (Username,Password ,Forename,Sur ...
 db_finalise()
 Response.Redirect("addusersuccess.html")
End If

Figure 4.4: Extract from adduser.asp showing use of user redirects

In this case, if the two passwords entered by the user do not match, he is forwarded to

“adduser_diffpass.asp”; if any essential fields are left blank, he is forwarded to

“adduser_incomplete.asp”, and so on.

E-commerce Site with Smartcard Payment Mechanism 4 Server Implementation

 Page 21

,%)

��	�����
�	�!�	!��

A Microsoft Access database was used for storing user and product information; this

product being chosen solely for its ease of availability (see 3.4 Database Design Issues).

4.3.1 Relationships

Being a relational database, it is possible to define relationships that exist between fields in

different tables. Such usage enforces referential integrity - by defining the structure at

such a low level, faulty code or interfaces are prevented from entering invalid data into the

database, allowing problems to be recognised more easily and thus assisting in debugging.

The tables created, and relationships between fields are as shown below. Primary keys are

indicated in bold.

Figure 4.5: Database structure

4.3.2 Tables

The Accounts table contains a record for each registered user, comprising username and

password, real name, and the shipping address most recently entered (i.e. for the current

transaction). Products contains the full list of items available, each being assigned a

category from the list defined in Categories. These categories are used within the

browsing process - the user being able to view all relevant products by selecting the

required category from a dynamically created drop-down list within his web browser.

E-commerce Site with Smartcard Payment Mechanism 4 Server Implementation

 Page 22

Baskets brings together user and product information (from Accounts and Products,

respectively) to indicate the items selected by users to be in their “shopping baskets”.

Within Access, the relationships defined between fields can only be of the type

One-to-Many, as shown (e.g. a product may only be assigned to one category, but a

category may be assigned to many products). In order to provide a Many-to-Many

relationship for the shopping baskets (a user may select many products, and a product may

be selected by many users), Baskets is required to act as a junction table, possessing two

primary keys to ensure uniqueness only of the combinations of (ProductID,Username)

tuples (i.e. it is possible for multiple records to exist with the same ProductID, providing

the Username differs for each such record; and vice-versa).

Once a purchase is made, products (referenced by ProductID) are “moved” to the

Dispatches table, which would be used by the shipping department to arrange for

despatch. Each record relates to one product only, to allow individual components of an

order to be considered separately. Hence, whenever sufficient stock was available, a

delivery could be made, and the record deleted from the system. The Name and Address

fields relate to the shipping details entered during the checkout stage, and are not stored

elsewhere in the system to ensure no permanent record is made of them, for user privacy

reasons.

CardPayments represents the list of credit card transactions that have been processed. In

the case of this system, a credit card transaction is deemed to have been successfully

carried out once an entry for it is made into this table. Obviously, in a real E-commerce

site, transaction authorisation would be made by a bank or clearing house - entry of data

into this table, however, simulates this process.

4.3.3 Queries

BasketQuery and BasketSubtotals are queries created within the database. Effectively,

these are read-only tables which are dynamically created by the server.

BasketQuery defines a link between its ProductID field and that of Products and thus

provides the data required for the server script to display details of a user’s basket (without

need for it to perform its own cross-referencing to obtain product description, for

example).

E-commerce Site with Smartcard Payment Mechanism 4 Server Implementation

 Page 23

BasketSubtotals links its Username field to that of BasketQuery, and calculates the total

cost of products within each user’s basket by defining the Subtotal field to be an

expression of the form:

Subtotal: Sum([BasketQuery]![Quantity]*[BasketQuery]![Price])

i.e. the summation of (quantity � price) for each item in BasketQuery associated with a

particular username.

,%,

�����������
.���
�������	���

VBScript’s “long” integer type was found to use a 32-bit signed number representation,

hence was capable of representing numbers with maximum magnitude of 232. This was

insufficient for performing calculations with 64-bit numbers, as used for the challenges and

responses within the smartcard debit and credit procedures (see 9 Cryptographic Challenge

and Response Cycle).

Consequently, a Java application was created which provided methods for performing the

calculations, accepting arguments and returning values as strings, and utilising the

java.math.BigInteger class which provides for representation of arbitrary length numbers.

Recent versions of the Java VMa for Windows allow any Java application to be instantiated

as a COM component - this facility was exploited to provide a means for the ASP code to

call the methods created, as illustrated below:

Dim sw_smartIDChallenge
Set sw_smartIDChallenge = Server.CreateObject("CSL. SmartIDChallenge")

Function preemptResponse(sw_value, sw_challenge)
 preemptResponse=sw_smartIDChallenge.preemptRespons e(sw_value,
 sw_challenge, sw_privateKey)
End Function

Figure 4.6: ASP code to call ‘preemptResponse’ method in Java application

Here, ‘CSL.SmartIDChallenge’ was the identifier (CLSIDb) used to register the Java applet

as a COM component on the server (via the JAVAREG utility).

a Virtual Machine
b Class ID

E-commerce Site with Smartcard Payment Mechanism 4 Server Implementation

 Page 24

,%-

��/

A free “test” server certificate was obtained from the Verisign CA, and using this, SSL was

successfully configured within IIS. However, due to the fact that such test certificates

expire after two weeks and the difficulty of obtaining repeat issues, SSL was not deployed

within the finished system. This should not be regarded as demeaning its necessity in any

way - should a release system ever be created, a suitable server certificate would need to be

purchased, and SSL re-enabled.

E-commerce Site with Smartcard Payment Mechanism 5 Client-Side Design Issues

 Page 25

-

�����	�����
������
$��!��

-%"

0����	�&	
����!�
/���!���
10��/2

All web pages are ultimately passed to a browser’s rendering engine as HTML, this being

an application of SGMLa. In their simplest form, HTML documents consist of a basic

block of text, interspersed with control codes (‘tags’ of the form <address>..</address>) to

indicate the nature or desired appearance of the “marked up” text. Tags also exist for

providing hyperlinks to other pages, displaying images, embedding Java applets, providing

form components to receive user input, and so on.

The language is officially managed by the W3Cb, who define the complete list of tags,

their usage, and the manner in which user agents (i.e. web browsers) should render content.

However, HTML has been in a constant evolutionary process since its inception;

consequently different browsers support different versions of the language and very few

have ever correctly supported the standard in its entirety. Additionally, vendors have

attempted to provide enhancements via their own proprietary additions (for example,

Netscape Navigator’s <blink> and Microsoft Internet Explorer’s <marquee> tags).

User agents are required to handle tags which they do not recognise by simply ignoring

them, and as such, careful design permits advanced features to be implemented

transparently - providing enhanced functionality to those browsers which support it, but

still permitting users of less well featured browsers to view the basic information present

on the page. Internet usage statistics suggest that over 85%c of users view pages with a

browser which supports HTML 4.0 (revised April 1998)1; consequently it was decided that

this version be used as the basis for developing the site, whilst ensuring that older browsers

(supporting HTML 3.22 and earlier) be capable of providing core functionality, albeit with

a less refined appearance and user interface. Proprietary features have been avoided

completely.

Differences in users’ system configurations (e.g. screen resolution, colour depth, font

availability), and in the interpretation and implementation of the HTML standard within

browsers, mean that the manner in which web pages will appear can never be completely

predictable. Despite the temptation to do so, considerable effort was made to avoid

a Standard Generalized Markup Language
b World Wide Web Consortium
c Source: browserwatch.internet.com

E-commerce Site with Smartcard Payment Mechanism 5 Client-Side Design Issues

 Page 26

designing the site for use on particular browsers and systems, instead making correct use of

HTML to ensure that the site be accessible from all platforms - both those currently in

existence and those only just emerging, such as “Web TV” and other embedded systems.

However, due to the fact that around 95% of web site hits are made using Microsoft

Internet Explorer or Netscape Navigator, the site was rigorously tested using these two

browsers to ensure an intuitive and aesthetically pleasing service for the majority of

customers.

5.1.1 Frames

“HTML frames allow authors to present documents in multiple views, which may be

independent windows or subwindows. Multiple views offer designers a way to keep certain

information visible, while other views are scrolled or replaced.”1

The decision was made to employ frames to provide a persistent toolbar for easily

navigating around the site (providing links to browse products, view shopping basket, log

out, etc.), as illustrated below. Additionally, because the toolbar frame remains in

existence for the duration of a visit, this was deemed the best place to embed the client-side

Java applet for communicating with the smartcard.

Toolbar
Frame

- Log in
- Log out
- Home
- Basket
- Shop

etc.

Main Frame

Displays selected page

Figure 5.1: Main frame structure

Similarly, an additional frameset within the main frame itself was considered most

appropriate for enabling users to search for and browse categories of products on the site:

Search Frame

Select category / Enter search term

Toolbar
Frame

- Log in
- Log out
- Home
- Basket
- Shop

etc.

Products Frame

Displays products matching

search criteria

E-commerce Site with Smartcard Payment Mechanism 5 Client-Side Design Issues

 Page 27

Figure 5.2: Browse/search products frame structure

Each frame within a frameset displays the contents of a separate HTML page, hence a

frameset document itself is fairly small - typically defining only the structure, layout and

URLs of the individual frames. It is also possible, however, to provide content within

<noframes>..</noframes> tags which is rendered by browsers that do not support frames.

This facility was used to provide links to the most relevant page (e.g. the “welcome” page

within the opening frameset); and all pages within the site were designed to provide an

alternative route to each page, should the static toolbars be absent. Links were used in

preference to repetition of content within the <noframes> section in order to ease

maintenance of the site (updates would otherwise require changes to be made in two

places), and in order to prevent unnecessary amounts of data from being transferred to the

majority of users who would be using frames.

5.1.2 Forms

“An HTML form is a section of a document containing normal content, markup, special

elements called ‘controls’ (checkboxes, radio buttons, menus, etc.), and labels on those

controls. Users generally ‘complete’ a form by modifying its controls (entering text,

selecting menu items, etc.), before submitting the form to an agent for processing.” 1

Being the only method for obtaining feedback from a user in a web application, forms were

clearly required for such actions as selecting categories of products to view, and submitting

search criteria, quantities and shipping details to the server.

Each control is given a unique name, and upon submission, key-value pairs of the form

(control name, control state) are passed to the server either within the headers of the HTTP

request (the ‘POST’ method), or as a suffix to the URL (the ‘GET’ method) thus:

http://www.aston.ac.uk/?forename=fred&surname=blogg s

Some browsers place an upper limit upon the length of a URL, constraining the number of

key-value pairs that can be transmitted using GET. Additionally, this method is clearly

unsuitable for transmitting sensitive information as the URL (in its entirety) is likely to be

clearly displayed within the user’s address bar, and may well be cached by the browser

and/or a proxy server. For these reasons, it was decided that POST be used for the

E-commerce Site with Smartcard Payment Mechanism 5 Client-Side Design Issues

 Page 28

submission of almost all forms within the site. This technique also has the advantage of

causing the information sent to the server to be encrypted if an SSLa session is used. The

only exception to this decision was for the submission of product category or search

criteria to the “show products” page - in this case, only a small amount of information is

ever transmitted (category name or search term), and the availability of URLs of the form:

http://www.server.com/products.asp?category=station ery

http://www.server.com/products.asp?searchterm=pens

provides an intuitive means for others to provide links to particular product pages on the

site. Also, as the response obtained from a particular category or search term is likely to

change infrequently (only when new products are added), it would be safe for a server or

browser to cache the page returned, referenced by its extended URL.

5.1.3 Client-side Scripting

The vast majority of browsers used today possess a scripting engine which permits

client-side code to be run within the browser environment (e.g. Netscape Navigator 3.0 and

later, Internet Explorer 3.0 and later, and Opera 3.0 and later). Usage of this scripting

capability can provide considerable benefits to both client and server - for example, it can

be used to validate forms before they are submitted to the server, preventing the user from

wasting time waiting for a response when the form data is invalid, reducing network traffic

and relieving server load.

However, despite the fact that scripts run in a “sandbox”, a plethora of security “holes”

have been discovered in the major browsers during recent years, allowing scripts to

observe or modify elements of the external system to which they should not be permitted

access. Whilst the vendors have typically been quick to provide patches to correct such

problems, some users have lost confidence in client-side scripting and have disabled it

within their browsers. Consequently, it is not possible to rely upon this technology for

achieving core functionality.

As a result, the decision has been made to utilise client scripting for the non-essential task

of ensuring form data is valid before submission (in addition to server-side validation), and

as the only means for providing an interface between the client-side Java applet and

components on the web page. Use of the smartcard is not essential for accessing and using

the site, hence this, again, does not detract from core functionality.

a Secure Socket Layer

E-commerce Site with Smartcard Payment Mechanism 5 Client-Side Design Issues

 Page 29

The standard HTML scripting language in use today is ECMAScript, originally developed

by Netscape (as JavaScript), and offered for standardisation in Autumn 1996. All browsers

which support client-side scripting support this language, hence this was the natural choice

for use within the project.

5.1.4 Dynamic HTML

Dynamic HTML (‘DHTML’) provides an enhanced user experience by permitting

client-side scripts to modify the appearance of the web page once retrieved from the server,

allowing - for example - objects to be moved and hidden in response to particular events.

The method by which such dynamic activity is achieved differs markedly between

browsers, however. Many do not support any form of DHTML, whilst the two most

commonly used products (Netscape Navigator 4 and Internet Explorer 4/5) possess such

radically different document object models that any form of dynamic user interface

effectively needs to be written twice - once for each browser. Despite the publication of a

standardised DOMa by the W3C3, it is only with the recent release of Navigator 6 that

some form of commonality between the Netscape and Microsoft products has been

recognisable.

Consequently, DHTML has not been employed at all within this project - due to the

author’s perception that it offers little benefit to the end user, and his reluctance to expend

considerable effort over learning and supporting non-standard, proprietary

implementations.

-%#

���������
�	���
����	�
1���2

Separation of content from style is generally regarded as desirable, due to the fact that the

role of providing and maintaining information (‘content’) is very different from that of

designing an aesthetically pleasing and logical user interface. Historically, HTML has

blurred the boundaries between the two - a page will typically contain information, perhaps

sectioned using descriptive tags such as <address>, together with formatting commands

such as (to increase text size).

CSS provides a means for defining style in a separate location from the main HTML body

(usually in a separate file entirely), and offers a far richer set of commands to define

appearance. For database-backed sites, where the underlying data is already separately

a Document Object Model

E-commerce Site with Smartcard Payment Mechanism 5 Client-Side Design Issues

 Page 30

maintained within the database, CSS provides the advantage of allowing multiple pages to

link to a single stylesheet, thus allowing changes to be made across the site by making just

one set of modifications.

The majority of current browsers support CSS Level 14 (Internet Explorer 3.0 and later,

Netscape 4.0 and later), hence it was decided that they be used throughout the site. Pages

viewed on a non-supporting browser might appear less attractive, but would retain full

functionality.

-%)

�����	�����
.���
�����	

In order for communication with the smartcard to be effected, the need became apparent

for the creation of an intermediate program which was capable of interfacing both with the

web browser and also with the smartcard reader attached to the computer. Client-side

scripting technology is incapable of achieving the latter directly, hence the most obvious

means for achieving this was to create a Java applet that would be capable of running

within the Java Virtual Machines (VM’s) present in the majority of mainstream browsers.

Old Java VM’s prevented applets from conducting operations which were considered

potentially harmful, such as accessing hardware, via a process known as sandboxing.

However, the security model of the Java platform 1.1 does permit such operations to be

conducted under certain circumstances (typically, after seeking the user’s permission).

Java 1.1 has been in existence for many years, hence is implemented in the vast majority of

browsers used today.

Additionally, via use of a system created by Netscape known as LiveConnect, it has

become possible for client-side scripts running in browsers to interface to Java applets

embedded within the page - specifically, by use of the netscape.javascript.JSObject class in

the Java code, and the ‘mayscript’ attribute in the <applet> tag within the host HTML.

It was clearly preferable for the applet to make use of an established standard to

communicate with the smartcard reader, as opposed to making a direct connection via the

serial/parallel port and being tied to one particular type of device. Consequently, it was

decided to make use of a Java-based framework known as OCFa that acts as an abstraction

layer between software and hardware, and for which drivers are available for a number of

devices.

a Opencard Framework

E-commerce Site with Smartcard Payment Mechanism 6 Client Implementation

 Page 31

3

�����	
$�������	�	���

Please refer to the accompanying CD-ROM to view the commented code and other files

created to implement the system (‘Web’ directory for user interface (HTML, CSS and

images), ‘Client’ directory for client-side Java applet source).

At the time of writing, the finished sites were available from

http://ee-pc43.aston.ac.uk/laceycs/sc and http://ee-pc43.aston.ac.uk/laceycs/sm .

3%"

+��
4���
$�	������

Two separate sites were ultimately created - one representing the card issuer

(SmartCentre), and providing card personalisation and top-up facilities; the other (Aston

SmartMarket) being the E-commerce site itself which makes use of the SmartID personal

profile and SmartWallet electronic cash facilities.

Pages were created using a text editor - development tools such as Microsoft FrontPage

and Macromedia Dreamweaver were avoided, as the code they generate was found to make

use of proprietary features within mainstream browsers which can prove problematic when

viewed in other environments.

Images were initially created in a vector-based drawing package, namely CorelXara 2.0,

which allowed for the creation of standard styles and modification of graphics (e.g.

enlargement and rotation) without loss of definition. When the design process was

complete, anti-aliased images were saved in GIFa for buttons and logos, which is a

compressed, non-lossy, format providing a maximum palette of 256 colours. Photographic

images were saved using JPEGb format, which provides 24-bit colour depth, but uses a

lossy compression algorithm (making it unsuitable for images containing highly defined

edges, such as logos).

a Graphical Interchange Format
b Joint Photographic Experts Group

E-commerce Site with Smartcard Payment Mechanism 6 Client Implementation

 Page 32

6.1.1 SmartCentre Site

Separate pages were created for:

• configuring the card (entering personal data, specifying security settings)

• changing the PIN

• unblocking the card by entering the correct unblock code

• viewing the balance

• crediting (‘topping up’) the card by use of a credit card

• repeating a top up which failed due to a network failure

together with various informational pages, including success/failure feedback for top-up

attempts.

Most of the pages used forms to obtain user input, passing the data to the card by use of the

client-side Java applet. Topping up and repeating top-ups were the only pages to require

server-side processing of forms (to generate the correct cryptographic response); the

remaining pages work correctly if run locally in a web browser (i.e. not fetched from a

server), providing users a means for configuring their cards without connecting to the

network, if required.

Figure 6.1: Form used to configure personal profile

E-commerce Site with Smartcard Payment Mechanism 6 Client Implementation

 Page 33

Frames were used to provide an easy-access toolbar, as seen in figure 6.1 above, which

also proved to be a suitable static location for embedding the applet.

6.1.2 Aston SmartMarket Site

Separate pages were created for:

• creating a new user account

• logging in

• viewing shopping basket contents and modifying quantities

• providing search facilities by category or textually

• displaying products matching the search criteria

• adding a specified quantity of a product to the shopping basket

• checking out using a credit card

• checking out using SmartWallet

• repeating a SmartWallet transaction that failed due to a system or network

problem

together with various informational pages, including success/failure feedback for actions

such as creating a new user and making credit card or smartcard payments.

Again, a frameset was created to provide a static toolbar, although navigation through

pages was such that operation in a non-frames environment is possible.

E-commerce Site with Smartcard Payment Mechanism 6 Client Implementation

 Page 34

Figure 6.2: Aston SmartMarket front page

Figure 6.3: Pages to search product database and view results

E-commerce Site with Smartcard Payment Mechanism 6 Client Implementation

 Page 35

3%#

�����	�����
.���
�����	

6.2.1 Interface Methods

The applet created provided the following methods which can be accessed from client-side

scripts, thus allowing others to implement SmartID and SmartWallet functionality into an

existing site relatively easily:

• getBalance() - returns balance as integer

• getField(String fieldName) - returns profile information as string

• setField(String fieldName, String fieldValue)

• debit(int value, String Challenge) - returns cryptographic response as string

• repeatDebitResponse() - returns cryptographic response as string

• prepareCredit(int value) - returns cryptographic challenge as string

• credit(String Response) - returns success status as boolean

• sendPin(int pin)

• setPin(int pin)

• setSecurity(boolean privateSec, boolean privateOnce,

 boolean generalSec, boolean generalOnce)

• getSecurity() - returns security settings as string of the form “0110”

• unblock(String code) - returns success status as boolean

• beginConversation()

• endConversation()

Most are fairly self-explanatory, and correspond to the core smartcard functions described

in 9.1 Smartcard Feature Set.

Possibilities for fieldName in getField(..) and setField(..) are “username”, “password”,

“forename”, “surname”, “streetaddress”, “town”, “county”, “postcode” and “ccnumber”.

Within setSecurity(..), the flags are as defined in 8.1.1 Smartcard PIN requests (true=1

and false=0). getSecurity() returns the current security settings in the same order as

specified in setSecurity(), where 0 represents false (off) and 1 represents true (on).

The concept of “conversations” was created in order to prevent the card PIN from having

to be repeatedly entered if a page requested several profile fields from the card, and the

card was configured always to require the PIN. A block of card instructions on a single

page may be surrounded by beginConversation() and endConversation(), during which

E-commerce Site with Smartcard Payment Mechanism 6 Client Implementation

 Page 36

time if the card requests the PIN, the applet will cache it and automatically return it to the

card when required.

6.2.2 Netscape Navigator and Internet Explorer Sec urity Models

Differences between the security models of browsers caused problems in the

implementation of the applet, as the means for requesting permission to perform “unsafe”

features differs in Netscape Navigator and Internet Explorer.

Within Netscape Navigator, additional code was required within the applet that caused an

error to be thrown when run in Internet Explorer. Consequently, a slightly different

version of the applet had to be created, and then placed in a JARa file, and digitally signed

using a Netscape-specific mechanism.

In Internet Explorer, permission was granted by adding the web site to the list of “trusted

sites”, for which full Java permissions then had to be enabled. Creation of a CABb file

which was digitally signed would allow this process to become more automated

(presenting a screen to the user allowing him to allow or deny permissions upon

download). However, such a mechanism is also proprietary, and insufficient time was

available for this to be successfully implemented.

6.2.3 Drivers for Smartcard Readers

Although native OCF drivers have been created for many smartcard readers, it was found

that their installation tends to be fairly complicated (involving manually editing

configuration scripts), and is disconcerting for many users. PC/SCc drivers, however, now

appear to be supplied as standard with the vast majority of readers, usually in a form more

suited to installation by non-technical users (e.g. by means of an InstallShield “wizard”).

Although they cannot be directly controlled within Java, OCF provides a means to access

PC/SC drivers. Therefore, despite resulting in the creation of an extra abstraction layer,

this configuration was used to permit the simplest means of client installation.

a Java Archive
b (Microsoft) Cabinet
c PC/Smartcard

E-commerce Site with Smartcard Payment Mechanism 7 Smartcard Design Issues

 Page 37

5

����	����
������
$��!��

5%"

������
��
*����	���
���	��

Three multiple application smartcard operating systems are commonly in use - namely,

Sun’s JavaCard, Microsoft’s Windows for Smartcards and Maosco’s MULTOS. The

functionality provided by each appears to be fairly similar - the major difference in

implementations being the language in which development takes place (Java, Visual Basic

and assembly language, respectively).

The decision was made to select MULTOS cards for development, solely because this is

the system upon which the Aston University Smart Campus Card is based. Consequently,

it should be possible for the applications written for this project to be loaded onto an Aston

card should a suitable application load certificate be obtained from the MULTOS CAa.

5%#

����������	
����!����	���

ISO 7816 Part 4 defines a standard means for card-client communication which is

supported by MULTOS and the vast majority of smartcard implementations.

Communication takes place via a sequence of APDU’sb, which are effectively messages or

packets of data formatted in a consistent manner.

7.2.1 Command APDU’s

Command APDU’s (i.e. those sent to the card) consist of a standard four-byte header,

optionally followed by a body of arbitrary length containing data, as shown in Figure 7.1

below:

Header Body

CLA INS P1 P2 Lc Data Le

Figure 7.1: ISO 7816-4 Command APDU structure

where the CLA (class) and INS (instruction) bytes identify which operation is being

requested of the smartcard; P1 and P2 are parameters specific to the function called; Lc

contains the amount (length) of data present in bytes; Le contains the expected length of

the response data in bytes.

a Certification Authority
b Application Protocol Data Units

E-commerce Site with Smartcard Payment Mechanism 7 Smartcard Design Issues

 Page 38

7.2.2 Response APDU’s

Response APDU’s consist of an optional data body, followed by a two-byte trailer, as

shown in Figure 7.2 below:

Body Trailer

Data SW1 SW2

Figure 7.2: ISO 7816-4 Response APDU structure

where SW1 and SW2 comprise the Status Word, providing information as to the success or

failure of the operation (e.g. 90,00 represents successful; 69,82 security status not

satisfied).

7.2.3 APDU Cases

Consequently, four fundamental types of command exist, as defined by ISO 7816:

• Case 1 - No command or response data present

• Case 2 - Only response data (from card) present

• Case 3 - Only command data (to card) present

• Case 4 - Both command and response data present

Cases 2, 3 and 4 were deemed suitable for use with respect to the personal profile and

wallet functions created for this project, e.g. case 2 for retrieving profile information, case

3 for updating profile information, and case 4 for issuing a debit instruction (where the

client sends a cryptographic challenge and the value to be debited, and receives the card’s

cryptographic response).

E-commerce Site with Smartcard Payment Mechanism 8 Smartcard Implementation

 Page 39

6

����	����
$�������	�	���

Please refer to the accompanying CD-ROM (‘Card’ directory) or Appendix 7 to view

commented code for the card applet created.

6%"

 ��	!��
��	

As described in 2.2 Requirements, the general functionality required of the smartcard was

the storage and retrieval of data in the personal profile, and provision of a “wallet” for

electronic cash. For more detailed information upon implementation of the latter, refer to

9 Cryptographic Challenge and Response Cycle.

It would have been possible, and perhaps desirable, to implement two independent applets

for providing the profile and wallet features. However, to minimise confusion, all

functionality was provided within a single applet for the purposes of this project.

The following instruction set was defined and implemented within MALa code. The

numbers in parentheses represent length in bytes, and the prefix ‘0x’ indicates a

hexadecimal value.

INS Feature Input Data Output Data
0x0n Return profile information ASCII {30}
0x1n Set profile information ASCII {30}
0x20 Debit wallet Crypto challenge {6}

Debit value {2}
Crypto response {8}

0x21 Prepare for credit Credit value {2} Crypto challenge {8}
0x22 Attempt credit Crypto response {8}
0x23 Repeat last debit response Crypto response {8}
0x30 Return balance Balance {2}
0x40 Submit PIN PIN {2}
0x41 Set PIN New PIN {2}
0x42 Update security settings Settings {4}
0x43 Return current security settings Settings {4}
0x44 Unblock card Unblock code {8}

Figure 8.1: Implemented smartcard feature set

 8.1.1 PIN Requests

As an additional measure of security, the applet was designed not to perform “dangerous”

operations (such as debits and profile changes) unless the correct PIN is submitted directly

beforehand (using instruction 0x40).

a Multos Assembly Language

E-commerce Site with Smartcard Payment Mechanism 8 Smartcard Implementation

 Page 40

In addition, it was made possible for the user to configure the card as to whether and how

often (always, once per session, or never) PIN entry is required for retrieving profile

information. Options can be specified for “sensitive” data (password and credit card

number) and for “general” data (all other fields).

The four bytes sent and received as security settings in instructions 0x42 and 0x43

represent four flags {privateSec, privateOnce, generalSec, generalOnce}. privateSec

indicates whether the card should request PIN entry when retrieving private information,

and privateOnce how often this should occur (1 = once per session, 0 = every request).

The setting of the latter is irrelevant if privateSec is set false. Similarly, generalSec and

generalOnce specify whether and how often the PIN should be requested for the retrieval

of general data.

6%#

����������	��
�������

Coding was carried out using a text editor, and Hitachi’s Multos Development Tools used

to compile, debug and load the MAL code onto a smartcard.

Very basic functionality was implemented in the early stages of development, with extra

features being added once testing proved that those already in existence worked as

intended. Extensive use was made of the “MSDT” card simulator to insert breakpoints

into code, then transmit particular APDU’s and step through each line of the applet. The

system permitted the values of chosen variables to be observed (“watched”) whilst

stepping through the code, and showed the contents of registers, the stack and the

transaction shadow data area - all of which proved invaluable in identifying errors within

the code.

To permit testing of the applet upon the smartcard itself, the Terminal Simulator was used

to upload the applet (by selection of a suitable load certificate, designed for the

development cards), transmit APDU’s and view the card response.

E-commerce Site with Smartcard Payment Mechanism 9 Cryptographic Challenge and Response Cycle

 Page 41

7

����	��������
���������
���
'�������
�����

7%"

'�(!������	�

Previous design decisions dictated that the only record of the value stored within a user’s

wallet was to be on the smartcard itself (see 2.2.1 Electronic cash requirements).

Consequently, a system needed to be created whereby:

1. it was impossible for a user to increase his balance by any means other than a

transaction authorised by the card issuer.

2. a server issuing a debit instructions could be assured that the balance had been

successfully decreased (before shipping goods, for example).

Furthermore, communication between server and card had to occur via an insecure,

untrusted network/client terminal, open to eavesdropping and modification of the data

being transferred.

7%#

$�������	��
���!	���

The only means by which the requirements previously detailed could be met appeared,

therefore, to be by means of cryptography and the storage of keys on both the server and

the smartcard (see 3.5 Encrypted Communication).

The fact that code run on the smartcard can be trusted (see 2.1.1 Applicability of smartcard

technology) means that the card can be relied upon to assess whether a credit instruction

originated from an authorised source before increasing the balance. Additionally, the card

applet can be created such that a particular response (verifiable by the server, and

incalculable except using the private key on the card) is generated to indicate that a debit

instruction was successful (subject to user authorisation by entry of a PIN).

The fact that, for this project, the card issuer was the same entity as the site which

authorised transactions, meant that it was acceptable to use symmetric cryptography (i.e.

make use of one private key only, stored on both the server and the card). Consequently,

the security of the system would be broken if the private key was ever divulged to a third

party. In a release system, the use of asymmetric cryptography or simply a different

E-commerce Site with Smartcard Payment Mechanism 9 Cryptographic Challenge and Response Cycle

 Page 42

private key for each card (as in GSMa SIMb cards) would reduce the potential for such

catastrophic destruction of the system’s security!

7%)

����	
������!��

The procedure to debit the card involves the generation of a challenge by the server, which

is transmitted to the client together with the value to be debited. The card then attempts to

decrease its balance by the amount specified and - if successful - digitally signs the

(challenge,value) data using its private key. The response thus generated can then be

returned to the server which, using the same private key as that present on the card, can

assess whether the correct response has been returned and thus whether the debit

instruction was carried out.

Figure 9.1: Debit communication sequence

The algorithms typically used to perform digital signatures are DES or 3-DES. However,

neither was not available on the development card provided; consequently, the function

performed was simply an exclusive-or of the 64-bit private key with a concatenation of the

48-bit challenge and the 16-bit debit value. Clearly, such a function is in no way suitable

for digital signatures, as it is easily reversible, allowing the private key to be calculated. If

implemented on a release card, the values would instead be passed to the digital signature

algorithm provided; and the same function used on the server.

Each challenge generated by the server needs to be unique (a nonce), so that the correct

response can never be obtained by reference to historic data. For the purposes of this

a Global System for Mobiles
b Subscriber Identity Module

E-commerce Site with Smartcard Payment Mechanism 9 Cryptographic Challenge and Response Cycle

 Page 43

project, use of a 48-bit random number with over 280 billion possible values, is regarded

as being sufficient. Deployment in the real world may require the use of longer numbers

and a different means for calculating the nonce, in order to provide higher levels of

security, and reduce the possibility of brute-force attacks from succeeding.

7%,

�����	
������!��

For topping up the card, a similar strategy is used to that employed within the debit

procedure. However, in this case the challenge is generated by the card, and thus an

additional stage is required for the challenge to be requested, as shown:

Figure 9.2: Credit communication sequence

‘value’ is set to zero after completion of the top-up to prevent replay of the reponse causing

multiple credits.

7%-

���������
	�
8�	����
 ���!���

In the event of a network failure, the situation may arise where value is successfully

debited from the card, and the response is generated but never received by the server.

Consequently, the card applet was coded such that the response, once generated, is stored

in non-volatile memory; and a command added to the instruction set which causes the card

to repeat its last response. Hence, this facility could be used repeatedly to re-attempt

transmission of the response over the network until successful.

Similarly, in the event of a network failure preventing a response from reaching the card in

the final credit stage, the server needs to be able to re-transmit this as many times as

E-commerce Site with Smartcard Payment Mechanism 9 Cryptographic Challenge and Response Cycle

 Page 44

necessary (i.e. take responsibility for making a record of the last response calculated for

each user).

7%3

���������
	�
���	��
$�	���!�	����

In the same way that transactions were employed to prevent partial completion of database

processes on the server (see 3.4.1 Database Transactions), cards transactions have been

used to encompass the critical actions shown in Figures 9.1 and 9.2. Consequently, if

power to the card was cut (e.g. by removing (tearing) the card) between critical operations,

any changes made would be rolled back when the card was next powered up - hence in the

case of debits, subtraction of the balance would be undone if a response was not calculated.

7%5

���!��	�

The security model of the cryptographic challenge/response cycle appears to be sound,

resilient to fraud attempts such as replay attacks. However, there is no check made during

the debit procedure that the debit request is being made by an authorised entity - instead,

the user is relied upon to ensure that the site/application they are using is trustworthy

(perhaps by reference to an SSL certificate). Within a release system, it would be

beneficial to reduce the possibility of unauthorised debits by requiring requests to be

themselves signed in some manner.

A test site was created indicating the different stages of the debit and credit procedures,

and allowing values to be modified to simulate fraud attempts. This is included on the

CD-ROM (‘Web/test’ directory) and at the time of writing was available from

http://ee-pc43.aston.ac.uk/laceycs/test/debit.html and

http://ee-pc43.aston.ac.uk/laceycs/test/credit.html .

E-commerce Site with Smartcard Payment Mechanism 9 Cryptographic Challenge and Response Cycle

 Page 45

Figure 9.3: Debit test site

Figure 9.4: Credit test site

E-commerce Site with Smartcard Payment Mechanism 10 Evaluation

 Page 46

"9

���!�	���

The author believes the project to have been successful, in meeting and exceeding the

original aims. An E-commerce site has been successfully created, and - in the absence of

suitable specifications from Mondex - a secure smartcard payment system has been created

from scratch. Additionally, a smartcard personal profile system has been created in

response to the request of Hitachi’s Smart Commerce Division.

Several people were asked to test the sites created, and feedback obtained from them was

used to refine the user interface. Considerable testing has also been carried out by the

author to ensure the stability of the entire system.

A site was created to demonstrate the workings of the credit and debit procedures,

permitting modifications to be made to the data passed to the card and server. Attempts to

defraud the system (e.g. by decreasing the value passed to a card for a debit attempt, or

conducting replay attacks) all failed.

"9%"

���:��	
���	���

The only direct costs involved with the development of the system were with respect to

smartcard hardware and development tools (kindly donated by Hitachi):

 1 GIS Smart Mouse smartcard reader £23.50

 2 MULTOS 3 Test Cards @ £20 each £40.00

 Total: £63.50

Additionally, two PC’s (a server and a workstation) and various operating systems and

pieces of software (Windows, Multos Development Tools, Access) were utilised.

The author believes the time spent researching and developing the system to be in excess

of four hundred hours. Additionally, around twelve hours were spent in consultation with

academic staff and Hitachi representatives; and approximately three hours with support

staff.

E-commerce Site with Smartcard Payment Mechanism 10 Evaluation

 Page 47

"9%"

��������
 !	!��
����������	

Should further time have been available, it would have been desirable to address the

following issues:

1. Remove the need for the site to be added to the list of “trusted sites” and for full Java

permissions to be explicitly granted in Internet Explorer, by providing a version of the

client-side Java applet which was digitally signed using Microsoft’s signing

technology. Alternatively, research the feasibility of using Sun’s Java Plug-in for

Internet Explorer, Netscape Navigator and Opera to provide a standard means for

running and granting access rights to code.

2. Reduce the potential for unauthorised card debits by requiring debit requests to be

digitally signed.

3. Reduce the complexity of the installation process required by users, by creating an

InstallShield wizard (or similar) to automate the process.

4. Increase the level of user feedback provided when transactions fail by providing a

fuller range of card response codes to indicate different errors

5. Ensure validation of HTML forms occurs both on the server side and the client side in

all cases.

In the longer term, the project could be developed further by:

1. Performing server load tests, and implementing a system more suited to high volume

traffic (e.g. by deploying an Oracle database)

2. Providing additional means for accessing the site, e.g. via WAP/WML on mobile

telephones

3. Creating client-side software to configure the smartcard and manage the personal

profile, without need for accessing the “SmartCentre” web site.

E-commerce Site with Smartcard Payment Mechanism 11 Conclusion

 Page 48

""

�����!����

The successful creation of smartcard-based electronic cash and personal profile systems,

and the integration of these into a fully-functioning E-commerce site, suggest that

smartcard technology does provide a feasible solution to some of the problems which

prevent E-commerce sites from realising their full potential. Specifically, the end-product

created for this project provides a portable, secure means for users to store and transfer

electronic cash over the Internet, providing the same benefits that real cash has over credit

cards with respect to micropayments, anonymity and speed of transaction. Additionally,

the system allows users to complete online forms rapidly, and removes the need for sites to

retain records of personal data - providing benefits in terms of privacy and removing the

need for users to inform numerous sites whenever details change.

Currently, the use of smartcard technology for these purposes is most fundamentally

constrained by the low number of card readers in general use. However, the increasing

deployment of smartcards in banking, and the inclusion of smartcard facilities in Windows

2000, can only serve to expedite their increase in popularity.

Nevertheless, a number of other issues have been identified which, until resolved, appear

likely to limit the utility of smartcard technology with respect to E-commerce.

Considerable difficulties were encountered in accessing the smartcard from within the web

browser: the only means discovered being by use of a framework (OCF) which is too

complicated to install for the majority of users. Also, differences in the security models of

browsers meant that applets had to be developed which were application-specific or

required complicated configuration steps to be carried out.

Additionally, the reluctance of Mondex International to provide their specifications to

individuals with whom they have no commercial trust agreement, seems to be indicative of

the attitudes of the developers of most electronic cash systems, and suggests that strong

confidence still does not exist in the security of these systems.

Widespread adoption of smartcard technology for E-commerce will therefore probably not

occur until a standard means for web browsers to interface with them has been developed,

and until an open standard exists for the storage and transfer of electronic cash, allowing

deployment by all.

E-commerce Site with Smartcard Payment Mechanism References

 Page 49

'���������

1 Ragget D et al: HTML 4.0 Specification, revised 1998, W3C

2 Ragget D: HTML 3.2 Reference Specification, 1997, W3C

3 Wood L et al: Document Object Model (DOM) Level 1 Specification, 1998, W3C

4 Lie H, Bos B: Cascading Style Sheets Level 1, 1996, W3C

E-commerce Site with Smartcard Payment Mechanism Bibliography

 Page 50

;�����������

Cobley A: The Complete Guide to Java, 1997, Computer Step

Bakken S, PHP User Manual, 1999, PHP Documentation Group

Devargas M: Smart Cards & Memory Cards, 1992, NCC Blackwell

Johnson S: Using Active Server Pages, 1997, Que

Lie H, Bos B: Cascading Style Sheets Level 1, 1996, W3C

Mitchell S, Atkinson J: Active Server Pages 3.0, 2000, SAMS

Ragget D et al: HTML 4.0 Specification, revised 1998, W3C

Ragget D: HTML 3.2 Reference Specification, 1997, W3C

Rankl W, Effing W: Smartcard Handbook, 1997, John Wiley

Reynolds M, Wooldridge A: Using JavaScript, 1996, Que

Tanenbaun A: Computer Networks, 3rd ed, 1996, Prentice Hall

Wood L et al: Document Object Model (DOM) Level 1 Specification, 1998, W3C

Apache 1.3 User’s Guide, 2000, Apache Group

Client-Side JavaScript Guide v1.3, 1999, Netscape Communications Corp.

Client-Side JavaScript Reference v1.3, 1999, Netscape Communications Corp.

ECMA Standard 262, ECMAScript Language Specification, 1997, ECMA

Java 2 SDK Standard Edition Documentation version 1.2.2, 1999, Sun Microsystems Inc.

Multos 4.0 Development Tools Documentation, 1999, Hitachi

Multos Developers Reference Manual v1.30, 1999, Maosco

Multos Developers Guide v1.20, 1999, Maosco

E-commerce Site with Smartcard Payment Mechanism Appendix 1: System Overview

 Page 51

�������&
"<

���	��
*�������

Internet Information Server

ASP Scripting Engine

ODBC Layer

Database

Server-side
Java App

Browser

Scripting Engine

Client-side Java applet

Java VM

SmartID Applet

API

Interpreter

Operating System (MULTOS)

Internet

PC/SC Layer

Server Client

Smartcard

Opencard Framework

E-commerce Site with Smartcard Payment Mechanism Appendix 2: Public Explanatory Material

 Page 52

�������&
#<

�!����

&�����	���
��	�����

�������&
#%"<

$�	���!�	���
	�
����	$�
���
����	+����	

Welcome to SmartCentre
This site allows configuration of your SmartID and SmartWallet applets.

SmartID enables you to store and maintain your personal profile on your own smartcard.
Sites using SmartID do not retain personal data, such as address and credit card details,
but instead obtain it when required by querying your smartcard. SmartID will only release
private information when you permit it to, giving you full control over how your data is
handled. Additionally, by allowing you to update your profile whenever necessary,
SmartID removes the need for informing numerous sites whenever your details change.

You can configure SmartID or change your PIN.

SmartWallet provides a secure means for storing and transferring value over insecure
networks, such as the Internet. Sites employing SmartWallet as a means of payment will
be able to debit or credit your card instantaneously, avoiding delays inherent within credit
card clearing systems. SmartWallet will only permit debits to be made after seeking your
permission, and as there is no need to hand over any credit or debit card details, there is no
risk of your number being used unlawfully.

You can view your current balance or top up your wallet using a credit or debit card.

E-commerce Site with Smartcard Payment Mechanism Appendix 2: Public Explanatory Material

 Page 53

�������&
#%#<

�������
�	�	����	
���
����	�����	

Privacy Statement
In order to make purchases from this site, you will need to register yourself into our user
database by providing your name and choice of username and password. This, and the
contents of your shopping basket, is the only information which SmartMarket will retain
concerning you.

Whenever address or credit/card number information is requested, it used to process the
single transaction for which it has been entered. No permanent record is made of this data.
We recommend that you use the SmartID smartcard system to maintain your personal
profile and use this to fill in our forms quickly and accurately.

Whenever you log in, we use a "session cookie" to identify you to our server for the
duration of your visit. Such cookies are small text files which are temporarily stored on
your computer's hard disk, the contents of which can only be sent to the web site which
originally created them. All session cookies are automatically destroyed by your browser
when you close it down.

To remove the need for logging in every time you visit our site, you may tick the box
named "remember my login using cookies" to store a permanent cookie on your hard disk.
We recommend this option only if you are using a personal machine. Logging out from our
site will always destroy all session and permanent cookies.

E-commerce Site with Smartcard Payment Mechanism Appendix 3: Server Installation Instructions

 Page 54

�������&
)<

������
$��	����	���
$��	�!�	����

These instructions are specific Microsoft Windows NT 4 Server, with the Java Virtual

Machine, Internet Information Server 3 (with ASP support), and Access ODBC drivers

installed. Deployment on other platforms is untested.

1. Copy the web site files (on CD-ROM, ‘Web’ directory) into the web root directory of

IIS (by default, C:\Inetpub\wwwroot) or create a new virtual directory to host the files

elsewhere.

2. Copy the Access database (on CD-ROM, ‘Server’ directory) to a location on the server

that is not a served web directory. Create an ODBC connection to this file using the

Access ODBC driver

(Control Panel � Data Sources (ODBC) � System DSN tab � Add...)

3. Copy the Server-side Java application to WINNT\Java\TRUSTLIB and register it as a

COM component using the JAVAREG utility (if not on system, on CD-ROM, ‘Server’

directory) using the following command:

javareg /register /class:SmartIDChallenge /progID:C SL.SmartIDChallenge

4. Reboot the system to complete registration of the COM component

�������&
)%"<

$�������	���
��/

SSL is not required for the successful implementation of this system. The following

procedure can, however, be used to implement it if required. Microsoft Certificate Server

will need to be installed before proceeding.

Appendix 3.1.1 Generation of Server Certificate

• Start the Internet Service Manager (Start -> Windows NT 4 Option Pack -> Microsoft

Internet Information Server -> Internet Service Manager)

• Right click on “Default Web Site” (or virtual directory if created), select “Properties”

• Directory Security tab -> Edit Secure Communication -> Key Manager

• Right click “WWW” in Key Manager, Create New Key

• Follow the wizard to create a certificate request file, ensuring “Put the request in a file”

is selected on the first screen, as automatic transmission to an online authority appears

E-commerce Site with Smartcard Payment Mechanism Appendix 3: Server Installation Instructions

 Page 55

not to work correctly. On the third screen, ensure the entry for “Organisation” is the

registered owner of the domain within which the web server resides (e.g. “Aston

University” for aston.ac.uk). Also, “Common Name” should be the resolved IP

address of the web server (e.g. ee-pc43.aston.ac.uk) - if this is unknown, determine

using http://www.clara.net/dialup/support/ip.shtml .

• Request a server certificate from a Certification Authority (e.g. Verisign at

http://www.verisign.com/site/index.html), following the online instructions and

submitting the file generated by Key Manager (the CSRa file) when requested

• After receiving the certificate, right click the new key in Key Manager and select

“Install Key Certificate”. Locate the certificate and select it. If the certificate received

was embedded as plain text within an Email message, it will be necessary to copy and

paste the text between -----BEGIN CERTIFICATE----- and

-----END CERTIFICATE----- into a new file with a .p7r extension, and then select this

file.

• Close Key Manager and save changes when requested.

Appendix 3.1.2: Enabling SSL

• Right click on the virtual directory or “Default Web Site” as appropriate, select

“Properties”

• Directory Security tab, enable “Require secure channel when accessing this resource”

and “Accept client certificates”

• Apply settings by clicking “OK”.

Once this procedure has been carried out, access to the web site will be available only via

SSL (requiring https:// as the prefix to its URL).

a Certificate Signing Request

E-commerce Site with Smartcard Payment Mechanism Appendix 4: Client Installation Instructions

 Page 56

�������&
,<

�����	
$��	����	���
$��	�!�	����

These instructions are specific to Microsoft Windows 98 with Internet Explorer 5.0 and/or

Netscape Navigator 4.7. Deployment on other platforms is untested.

�������&
,%"<

�������
���
����	����
'�����

1. Install PC/SC driver for smartcard reader (driver for “SmartMouse” reader is on

CD-ROM)

2. If not already present, install Java Runtime Environment (necessary to install OCF),

available from http://java.sun.com

3. Install Opencard Framework library, provided on CD-ROM or available from

http://www.opencard.org by issuing the command: java installOCF

4. Copy ‘base-opt1.jar’ and ‘pcsc.jar’ (new patch) from CD-ROM (‘OCF Installation’

directory) into OpenCard library directory (C:\OpenCard\OCF1.2\lib by default)

5. Add the OCF classes to the system CLASSPATH by making the following additions to

AUTOEXEC.BAT:
CALL C:\OpenCard\OCF1.2\demos\setenv.bat

SET CLASSPATH=%CLASSPATH%;C:\OpenCard\OCF1.2\lib\ba se-core.jar

SET CLASSPATH=%CLASSPATH%;C:\OpenCard\OCF1.2\lib\ba se-opt1.jar

SET CLASSPATH=%CLASSPATH%;C:\OpenCard\OCF1.2\lib\pc sc.jar

SET CLASSPATH=%CLASSPATH%;C:\OpenCard\OCF1.2\lib\re ference-services.jar

�������&
,%#<

$�	����	

&������

1. Copy the ‘opencard.properties’ file installed by OCF (by default, in

C:\Program Files\JavaSoft\JRE\1.2\lib) into IE’s Java home directory

(Windows\Java\lib)

2. Add the server upon which the site is hosted (e.g. ee-pc43.aston.ac.uk) to the list of

“trusted sites” (Tools � Internet Options...� Security tab � Trusted Sites � Sites...)

3. Grant full permissions to Java code originating from trusted sites

(Trusted Sites � Custom Level... � Java Permissions, select “Custom”;

Java Custom Settings... � Edit Permissions � Run Unsigned Content, select “Enable”)

E-commerce Site with Smartcard Payment Mechanism Appendix 4: Client Installation Instructions

 Page 57

�������&
,%)<

8�	�����
8�����	��

1. Copy the ‘opencard.properties’ file installed by OCF (by default, in

C:\Program Files\JavaSoft\JRE\1.2\lib) into Netscape’s Java home directory

(C:\Program Files\Netscape\Users\<username>) as ‘.opencard.properties’

2. Copy the DLL ‘OCFPCSC1.DLL’ installed by OCF (by default, in

C:\OpenCard\OCF1.2\lib) to Netscape’s Java library directory (C:\Program

Files\Netscape\Communicator\Program\java\bin)

3. Install the certificate for the “Aston” Certification Authority (used to create the

certificate with which the applet was signed, as opposed to purchasing one) by

dragging the ‘x509.cacert’ file (on CD-ROM, ‘Client/NS’ directory) into the browser

window, and following the online instructions

E-commerce Site with Smartcard Payment Mechanism Appendix 5: Server Code

 Page 58

�������&
-<

������
����

�������&
-%"<

���

&������

Appendix 5.1.1: Library for calling cryptographic functions (sw_lib.asp)

<%
'Library of SmartWallet cryptographic functions

Const MaxBalance = 65000
Const sw_privateKey = "1311768467294899695"

'Inclusion of this library will automatically insta ntiate the server java COM component
Dim sw_smartIDChallenge
Set sw_smartIDChallenge = Server.CreateObject("CSL. SmartIDChallenge")

'Generate a response to a card's challenge for topu p (i.e. authorise the credit)
Function createResponse(sw_value, sw_challenge)
 createResponse = sw_smartIDChallenge.createRespons e(sw_value, sw_challenge,
 sw_privateKey)
End Function

'Calculate the expected response from a card to ind icate required debit occurred
Function preemptResponse(sw_value, sw_challenge)
 preemptResponse=sw_smartIDChallenge.preemptRespons e(sw_value, sw_challenge,
 sw_privateKey)
End Function

'Generate a challenge for the debit procedure
Function createChallenge
 createChallenge=sw_smartIDChallenge.createChalleng e()
End Function

'Release connection to COM component
Function sw_finalise
 Set sw_smartIDChallenge = nothing
End Function
%>

E-commerce Site with Smartcard Payment Mechanism Appendix 5: Server Code

 Page 59

Appendix 5.1.2: Server-side validation for registe ring a user (adduser.asp)

<% @LANGUAGE = VBScript %>
<!--#include file="../std_lib.asp"-->
<!--#include file="../db_lib.asp"-->
<%
Dim urlAppend, userExists, username, password, fore name, surname
username=Request("username")
password=Request("password")
forename=Request("forename")
surname=Request("surname")

urlAppend = "?username=" & username & "&password=" & password & "&forename=" & forename &
"&surname=" & surname

'Check to see if user already exists in database
userExists = Not isEmptyRS("SELECT Username FROM Ac counts WHERE Username='" & username & "'")

If Request("password") <> Request("password2") Then
 'Passwords do not match
 db_finalise()
 Response.Redirect("adduser_diffpass.asp" & urlAppe nd)

ElseIf username="" Or password="" Or forename="" Or surname="" Then
 'Essential field left blank
 db_finalise()
 Response.Redirect("adduser_incomplete.asp" & urlAp pend)

ElseIf userExists Then
 'User already exists
 db_finalise()
 Response.Redirect("adduser_exists.asp" & urlAppend)

Else
 'OK to insert user into database
 dbExecute("INSERT INTO Accounts (Username,Password ,Forename,Surname) VALUES ('" &_
 & username & "','" & password & "','" & forename & "','" & surname & "')")
 db_finalise()
 Response.Redirect("addusersuccess.html")
End If
%>

E-commerce Site with Smartcard Payment Mechanism Appendix 5: Server Code

 Page 60

Appendix 5.1.3: Validating card’s debit response (scauthorise.asp)

<% @LANGUAGE = VBScript %>
<!--#include file="../std_lib.asp"-->
<!--#include file="../db_lib.asp"-->
<!--#include file="../cc_lib.asp"-->
<!--#include file="../sw_lib.asp"-->
<%
Dim expectedResp, actualResp, transactionValue, bas ketTotal, name, address
actualResp=Request("cardResponse") 'Retrieves card' s response to cryptographic challenge
basketTotal=getNumericBasketTotal()

'Obtain information for current transaction from da tabase...
dbQuery("SELECT Username,TransactionResponse,Transa ctionValue,TransactionName,
TransactionAddress,TransactionTown,TransactionCount y,TransactionPostcode FROM Accounts WHERE
Username='" & Session("username") & "'")

expectedResp = objRS("TransactionResponse")
transactionValue = objRS("TransactionValue")
name = objRS("TransactionName")
address = objRS("TransactionAddress") & ", " & objR S("TransactionTown") & ", " &_
 & objRS("TransactionCounty") & ", " & objRS("Trans actionPostcode")
objRS.Close

If transactionValue>MaxBalance Then
 'Debits of values greater than SmartWallet's maxim um balance are not possible
 db_finalise()
 Response.Redirect("sc_excess.asp")

ElseIf actualResp=expectedResp And basketTotal=tran sactionValue Then
 'Response obtained from card is correct, and value of basket contents
 'has not changed since challenge was issued
 objConn.BeginTrans 'Begin database transaction be cause checking out of each item
 'and forgetting expected response must be at omic
 purchaseBasket()
 dbQuery("UPDATE Accounts SET TransactionResponse= -1, TransactionValue=0 WHERE
 Username='" & Session("username") & "'")
 'Clears transaction information to prevent repla y attacks

 objConn.CommitTrans 'Commit transaction
 db_finalise()
 Response.Redirect("sc_success.asp")

Else
 db_finalise()
 Response.Redirect("sc_fail.asp")
End If
%>

E-commerce Site with Smartcard Payment Mechanism Appendix 5: Server Code

 Page 61

�������&
-%#<

�����������
.���
�������	���

import java.io.*;
import java.math.*;

public class SmartIDChallenge {

 final int MaxCardBalance = 65000;

 public String createChallenge() {
 BigInteger num256 = new BigInteger("256");
 BigInteger result = new BigInteger("0");
 int random;
 for (int i=0; i<=6; i++) { //Make a large random number by
 result = result.multiply(num256); //conc atanating several
 random = (int) (256*Math.random()); //rand om bytes (max value of byte=256)
 result = result.add(new BigInteger(Intege r.toString(random)));
 }
 return result.toString();
 }

 public String createResponse(int value, String c hallenge, String privateKey) {
 BigInteger num256 = new BigInteger("256");
 BigInteger result = new BigInteger("0");
 BigInteger challengeNum = new BigInteger(chal lenge);
 BigInteger challengeTest = new BigInteger(cha llenge);
 BigInteger privateKeyNum = new BigInteger(pri vateKey);
 byte txBlock[] = new byte[8];
 for (int i=7; i>=0; i--) {
 txBlock[i] = (byte) challengeTest.remainde r(num256).intValue();
 challengeTest = challengeTest.divide(num25 6);
 }
 if (txBlock[7]==(byte)(value%256) && txBlock[6]==(byte)(value/256))
 //Value embedded in challenge is same as t hat specified (in 'value' parameter)
 //therefore return correct response...
 result=challengeNum.xor(privateKeyNum);
 return result.toString();
 }

 public String preemptResponse(int value, String challenge, String privateKey) {
 BigInteger num256 = new BigInteger("256");
 BigInteger result = new BigInteger("-1");
 BigInteger challengeNum = new BigInteger(chal lenge);
 if (value <= MaxCardBalance) {
 byte txBlock[] = new byte[8];
 //Determine bytes that will actually be tr ansmitted to card...
 txBlock[7] = (byte)(value%256);
 txBlock[6] = (byte)(value/256);
 for (int i=5; i>=0; i--) {
 txBlock[i] = (byte) challengeNum.remain der(num256).intValue();
 challengeNum = challengeNum.divide(num2 56);
 }
 BigInteger txBlockNum = new BigInteger(txB lock);
 BigInteger privateKeyNum = new BigInteger(privateKey);
 result = txBlockNum.xor(privateKeyNum);
 }
 return result.toString();
 }

}

E-commerce Site with Smartcard Payment Mechanism Appendix 6: Client Code

 Page 62

�������&
3<

�����	
����

�������&
3%"<

0��/
���

��������	

&������

Appendix 6.1.1: Using client-side Java applet with forms (configsid.html)

<html>
<head>
<link rel="stylesheet" href="sc.css" type="text/css ">
<script language="javascript" type="text/javascript ">
function getFields() {
 var pin, secSettings, generalSec, generalOnce, p rivateSec, privateOnce
 parent.toolbar.document.smartID.beginConversatio n();
 document.userform.username.value=parent.toolbar. document.smartID.getField("username");
 document.userform.password.value=parent.toolbar. document.smartID.getField("password");
 document.userform.forename.value=parent.toolbar. document.smartID.getField("forename");
 document.userform.surname.value=parent.toolbar.d ocument.smartID.getField("surname");
 document.userform.address.value=parent.toolbar.d ocument.smartID.getField("streetaddress");
 document.userform.town.value=parent.toolbar.docu ment.smartID.getField("town");
 document.userform.county.value=parent.toolbar.do cument.smartID.getField("county");
 document.userform.postcode.value=parent.toolbar. document.smartID.getField("postcode");
 document.userform.ccNumber.value=parent.toolbar. document.smartID.getField("ccNumber");
 secSettings="x" + parent.toolbar.document.smartI D.getSecurity();
 parent.toolbar.document.smartID.endConversation();
 privateSec=secSettings.charAt(1);
 privateOnce=secSettings.charAt(2);
 generalSec=secSettings.charAt(3);
 generalOnce=secSettings.charAt(4);
 document.userform.privatePin[0].checked = ((priv ateSec=="1") && (privateOnce=="0"));
 document.userform.privatePin[1].checked = (priva teOnce=="1");
 document.userform.privatePin[2].checked = (priva teSec=="0");
 document.userform.generalPin[0].checked = ((gene ralSec=="1") && (generalOnce=="0"));
 document.userform.generalPin[1].checked = (gener alOnce=="1");
 document.userform.generalPin[2].checked = (gener alSec=="0");
}
function setFields() {
 var pin, generalSec, generalOnce, privateSec, pr ivateOnce
 generalSec = !(document.userform.generalPin[2].c hecked);
 generalOnce = document.userform.generalPin[1].ch ecked;
 privateSec = !(document.userform.privatePin[2].c hecked);
 privateOnce = document.userform.privatePin[1].ch ecked;
 parent.toolbar.document.smartID.beginConversatio n();
 parent.toolbar.document.smartID.setField("userna me",document.userform.username.value);
 parent.toolbar.document.smartID.setField("passwo rd",document.userform.password.value);
 parent.toolbar.document.smartID.setField("forena me",document.userform.forename.value);
 parent.toolbar.document.smartID.setField("surnam e",document.userform.surname.value);
 parent.toolbar.document.smartID.setField("street address",document.userform.address.value);
 parent.toolbar.document.smartID.setField("town", document.userform.town.value);
 parent.toolbar.document.smartID.setField("county ",document.userform.county.value);
 parent.toolbar.document.smartID.setField("postco de",document.userform.postcode.value);
 parent.toolbar.document.smartID.setField("ccNumb er",document.userform.ccNumber.value);
 parent.toolbar.document.smartID.setSecurity(priv ateSec, privateOnce, generalSec, generalOnce);
 parent.toolbar.document.smartID.endConversation();
}
</script>
</head>
<body>
<form name="userform">
<h1>Configure SmartID</h1>
<center>
<table border="0" cellpadding="0" cellspacing="10">
<tr><td align="right">Forename</td><td><input type= "text" name="forename" size="30"></td></tr>
<tr><td align="right">Surname</td><td><input type=" text" name="surname" size="30"></td></tr>
<tr><td align="right">Street Address</td><td><input type="text" name="address"
size="30"></td></tr>
<tr><td align="right">Town/City</td><td><input type ="text" name="town" size="30"></td></tr>
<tr><td align="right">County</td><td><input type="t ext" name="county" size="30"></td></tr>
<tr><td align="right">Postcode</td><td><input type= "text" name="postcode" size="30"></td></tr>
<tr><td>
</td></tr>
<tr><td align="right">Username</td><td><input type= "text" name="username" size="30"></td></tr>
<tr><td align="right">Password</td><td><input type= "password" name="password"
size="30"></td></tr>
<tr><td>
</td></tr>

E-commerce Site with Smartcard Payment Mechanism Appendix 6: Client Code

 Page 63

<tr><td align="right">Credit card number</td><td><i nput type="text" name="ccNumber"
size="30"></td></tr>
<tr><td>
</td></tr>
<tr><td align="right">Request PIN for general data< /td><td>
<input type="radio" name="generalPin">Always
<input type="radio" name="generalPin">Once
<input type="radio" name="generalPin" checked>Never
</td></tr>
<tr><td align="right">Request PIN for sensitive dat a</td><td>
<input type="radio" name="privatePin">Always
<input type="radio" name="privatePin" checked>Once
<input type="radio" name="privatePin">Never
</td></tr>
<tr><td>
</td></tr>
<tr><td colspan="2" align="right">
<input type="button" value="Retrieve current settin gs" onClick="getFields()">
<input type="button" value="Update configuration" o nClick="setFields()">
</table>
</center>
</body>
</html>

Appendix 6.1.2: Client-side validation of forms (s etpin.html)

<html>
<head>
<link rel="stylesheet" href="sc.css" type="text/css ">
<script language="javascript" type="text/javascript ">
function changePin() {
 var pin, secSettings, generalSec, generalOnce, p rivateSec, privateOnce
 if (document.userform.newPin.value==document.use rform.newPin2.value) {
 parent.toolbar.document.smartID.sendPin(docum ent.userform.currentPin.value);
 parent.toolbar.document.smartID.setPin(docume nt.userform.newPin.value);
 document.userform.currentPin.value="";
 document.userform.newPin.value="";
 document.userform.newPin2.value="";
 }
 else {
 alert("Entries for new PIN do not match.");
 }
}
</script>
</head>
<body>
<form name="userform">
<h1>Change PIN</h1>
<p>Please note that SmartWallet and SmartID use the same PIN.</p>
<center>
<table border="0" cellpadding="0" cellspacing="10">
<tr><td align="right">Current PIN</td><td><input ty pe="password" name="currentPin"
size="4"></td></tr>
<tr><td align="right">New PIN</td><td><input type=" password" name="newPin"
size="4"></td></tr>
<tr><td align="right">Confirm new PIN</td><td><inpu t type="password" name="newPin2"
size="4"></td></tr>
<tr><td>
</td></tr>
<tr><td colspan="2" align="right">
<input type="button" value="Change PIN" onClick="ch angePin()">
</table>
</center>
</body>
</html>

E-commerce Site with Smartcard Payment Mechanism Appendix 6: Client Code

 Page 64

�������&
3%#<

���

&�����
1��	��%���2

BODY
 {
 font-family: arial, helvetica, homerton, sans-seri f;
 color: #000066;
 background: #FFFFFF;
 background-image: url("img/cornertriangle.gif");
 background-repeat: no-repeat;
 }

TD
 {
 font-family: arial, helvetica, homerton, sans-seri f;
 color: #000066;
 }

H1,H2,H3,H4,H5,H6
 {
 font-family: stonesans, arial, helvetica, homerton , sans-serif;
 }

A
 {
 }

A:hover,A:active
 {
 color: #000066;
 }

E-commerce Site with Smartcard Payment Mechanism Appendix 6: Client Code

 Page 65

�������&
3%)<

�����	�����
.���
�����	

Appendix 6.3.1: SmartID class

import java.awt.*;
import java.io.*;
import java.math.*;
import java.applet.Applet;
import netscape.javascript.*;
import opencard.core.terminal.*;
import opencard.core.service.*;
import com.ibm.opencard.terminal.pcsc10.*;
import opencard.opt.util.*;
import opencard.core.OpenCardRuntimeException;
import opencard.core.util.OpenCardPropertyLoadingEx ception;
import opencard.core.terminal.CardTerminalException ;
import opencard.core.service.CardServiceException;

public class SmartID extends Applet {

 final int maxFieldSize = 30;
 final int unknownPin = -1;
 final int wrongPin = -2;

 //APDU's for transmission to the card
 final byte selectCommand[] = {(byte)0x00,(byte)0 xA4,(byte)0x04,(byte)0x0C,(byte)0x04,
 (byte)0xF2,(byte)0 x02,(byte)0x00,(byte)0x0A};
 final byte sendPinCommand[] = {(byte)0x00,(byte) 0x40,(byte)0x00,(byte)0x00,(byte)0x02};
 final byte setPinCommand[] = {(byte)0x00,(byte)0 x41,(byte)0x00,(byte)0x00,(byte)0x02};
 final byte unblockCommand[] = {(byte)0x00,(byte) 0x44,(byte)0x00,(byte)0x00,(byte)0x08};
 final byte getBalanceCommand[] = {(byte)0x00,(by te)0x30,(byte)0x00,(byte)0x00,(byte)0x02};
 final byte debitCommand[] = {(byte)0x00,(byte)0x 20,(byte)0x00,(byte)0x00,(byte)0x08};
 final byte debitLe[] = {(byte)0x08};
 final byte repeatDebitResponseCommand[] = {(byte)0x00,(byte)0x23,(byte)0x00,(byte)0x00,
 (byte)0x08};
 final byte prepareCreditCommand[] = {(byte)0x00, (byte)0x21,(byte)0x00,(byte)0x00,(byte)0x02};
 final byte prepareCreditLe[] = {(byte)0x08};
 final byte creditCommand[] = {(byte)0x00,(byte)0 x22,(byte)0x00,(byte)0x00,(byte)0x08};
 final byte setSecurityCommand[] = {(byte)0x00,(byte)0x42,(byte)0x00,(byte)0x00,(byte)0x04};
 final byte getSecurityCommand[] = {(byte)0x00,(byte)0x43,(byte)0x00,(byte)0x00,(byte)0x04};
 final byte getUsernameCommand[] = {(byte)0x00,(b yte)0x01,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte getPasswordCommand[] = {(byte)0x00,(b yte)0x02,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte getForenameCommand[] = {(byte)0x00,(b yte)0x03,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte getSurnameCommand[] = {(byte)0x00,(by te)0x04,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte getStreetAddressCommand[] = {(byte)0x 00,(byte)0x05,(byte)0x00,(byte)0x00,
 (byte)0x 1E};
 final byte getTownCommand[] = {(byte)0x00,(byte) 0x06,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte getCountyCommand[] = {(byte)0x00,(byt e)0x07,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte getPostcodeCommand[] = {(byte)0x00,(b yte)0x08,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte getCcNumberCommand[] = {(byte)0x00,(b yte)0x09,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte setUsernameCommand[] = {(byte)0x00,(b yte)0x11,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte setPasswordCommand[] = {(byte)0x00,(b yte)0x12,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte setForenameCommand[] = {(byte)0x00,(b yte)0x13,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte setSurnameCommand[] = {(byte)0x00,(by te)0x14,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte setStreetAddressCommand[] = {(byte)0x 00,(byte)0x15,(byte)0x00,(byte)0x00,
 (byte)0x 1E};
 final byte setTownCommand[] = {(byte)0x00,(byte) 0x16,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte setCountyCommand[] = {(byte)0x00,(byt e)0x17,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte setPostcodeCommand[] = {(byte)0x00,(b yte)0x18,(byte)0x00,(byte)0x00,(byte)0x1E};
 final byte setCcNumberCommand[] = {(byte)0x00,(b yte)0x19,(byte)0x00,(byte)0x00,(byte)0x1E};

 SmartCard sc;
 CardRequest cr;
 PassThruCardService serv;
 JSObject browserWindow;
 MessageFrame message;
 MessageFrame pinMessage;
 CommandAPDU selectAPDU = new CommandAPDU(50);
 CommandAPDU commAPDU = new CommandAPDU(50);
 int userPin = -1; //variable to h old cached user PIN for conversations
 boolean inConversation = false;
 boolean doneSetup = false;

E-commerce Site with Smartcard Payment Mechanism Appendix 6: Client Code

 Page 66

public boolean handleEvent(Event event) {
 return super.handleEvent(event);
 }

 public void init() {
 super.init();
 addNotify();
 browserWindow = JSObject.getWindow(this);
 message = new MessageFrame();
 pinMessage = new MessageFrame();
 selectAPDU.setLength(0);
 selectAPDU.append(selectCommand);

// Nestcape specific commands, to allow operatio n with Netscape security model
// opencard.core.util.SystemAccess sys = new ope ncard.opt.netscape.NetscapeSystemAccess();
// opencard.core.util.SystemAccess.setSystemAcce ss(sys);
// initCard();

 }

 public void destroy() {
 super.destroy();
 if (!doneSetup) {
 try {
 SmartCard.shutdown();
 }
 catch (CardTerminalException e) {
 System.out.println("CardTerminalExcepti on: " + e.getMessage());
 }
 }
 }

 public int getBalance() {
 BigInteger result = new BigInteger("0");
 commAPDU.setLength(0);
 commAPDU.append(getBalanceCommand);
 try {
 ResponseAPDU response = sendCommand(commAP DU);
 byte[] responseArray = {(byte)0x00, respon se.data()[0], response.data()[1]};
 result = new BigInteger(responseArray);
 }
 catch (Exception e) {
 System.out.println("Exception: "+e.getMess age());
 }
 return Integer.parseInt(result.toString());
 }

 public String getField(String fieldName) {
 String result = "";
 commAPDU.setLength(0);
 if (fieldName.equalsIgnoreCase("username")) c ommAPDU.append(getUsernameCommand);
 if (fieldName.equalsIgnoreCase("password")) c ommAPDU.append(getPasswordCommand);
 if (fieldName.equalsIgnoreCase("forename")) c ommAPDU.append(getForenameCommand);
 if (fieldName.equalsIgnoreCase("surname")) co mmAPDU.append(getSurnameCommand);
 if (fieldName.equalsIgnoreCase("streetaddress ")) commAPDU.append(getStreetAddressCommand);
 if (fieldName.equalsIgnoreCase("town")) commA PDU.append(getTownCommand);
 if (fieldName.equalsIgnoreCase("county")) com mAPDU.append(getCountyCommand);
 if (fieldName.equalsIgnoreCase("postcode")) c ommAPDU.append(getPostcodeCommand);
 if (fieldName.equalsIgnoreCase("ccnumber")) c ommAPDU.append(getCcNumberCommand);
 message.setMessage("Reading from smartcard... ");
 message.show();
 try {
 ResponseAPDU response = sendCommand(commAP DU);
 result = new String(response.data());
 }
 catch (Exception e) {
 System.out.println("Exception: "+e.getMess age());
 }
 if (!inConversation)
 message.hide();
 return result.trim();
 }

E-commerce Site with Smartcard Payment Mechanism Appendix 6: Client Code

 Page 67

 public void setField(String fieldName, String fi eldValue) {
 StringBuffer actualValue = new StringBuffer(f ieldValue);
 commAPDU.setLength(0);
 if (fieldName.equalsIgnoreCase("username")) c ommAPDU.append(setUsernameCommand);
 if (fieldName.equalsIgnoreCase("password")) c ommAPDU.append(setPasswordCommand);
 if (fieldName.equalsIgnoreCase("forename")) c ommAPDU.append(setForenameCommand);
 if (fieldName.equalsIgnoreCase("surname")) co mmAPDU.append(setSurnameCommand);
 if (fieldName.equalsIgnoreCase("streetaddress ")) commAPDU.append(setStreetAddressCommand);
 if (fieldName.equalsIgnoreCase("town")) commA PDU.append(setTownCommand);
 if (fieldName.equalsIgnoreCase("county")) com mAPDU.append(setCountyCommand);
 if (fieldName.equalsIgnoreCase("postcode")) c ommAPDU.append(setPostcodeCommand);
 if (fieldName.equalsIgnoreCase("ccnumber")) c ommAPDU.append(setCcNumberCommand);
 while (actualValue.length() < maxFieldSize) {
 actualValue.append(' '); //Pad field ent ry with spaces up to maximum size
 }

 commAPDU.append(actualValue.toString().substr ing(0,(maxFieldSize)).getBytes());
 //Use substring to truncate entries over m aximum size

 message.setMessage("Writing to smartcard...") ;
 message.show();
 try {
 ResponseAPDU response = sendCommand(commAP DU);
 }
 catch (Exception e) {
 System.out.println("Exception: "+e.getMess age());
 }
 if (!inConversation)
 message.hide();
 }

 public String debit(int value, String challenge) {
 BigInteger num256 = new BigInteger("256");
 BigInteger result = new BigInteger("0");
 BigInteger challengeNum = new BigInteger(chal lenge);
 byte txBlock[] = new byte[8];
 txBlock[7] = (byte)(value%256); //Load value into
 txBlock[6] = (byte)(value/256); //two separa te bytes for tx to card
 for (int i=5; i>=0; i--) { //Load chall enge into six separate bytes for tx to card
 System.out.println(challengeNum.remainder(num256).toString());
 txBlock[i] = (byte) challengeNum.remainder (num256).intValue();
 challengeNum = challengeNum.divide(num256) ;
 }
 commAPDU.setLength(0);
 commAPDU.append(debitCommand);
 commAPDU.append(txBlock);
 commAPDU.append(debitLe);
 message.setMessage("Debiting smartcard...");
 message.show();
 try {
 ResponseAPDU response = sendCommand(commAP DU);
 //Returns cryptographic response receiv ed from card

 result = new BigInteger(response.data());
 }
 catch (Exception e) {
 System.out.println("Exception: "+e.getMess age());
 }
 if (!inConversation)
 message.hide();
 return result.toString();
 }

E-commerce Site with Smartcard Payment Mechanism Appendix 6: Client Code

 Page 68

 public String repeatDebitResponse() {
 BigInteger result = new BigInteger("0");
 commAPDU.setLength(0);
 commAPDU.append(repeatDebitResponseCommand);
 try {
 ResponseAPDU response = sendCommand(commAP DU);
 //Returns cryptograpic response receive d from card

 result = new BigInteger(response.data());
 }
 catch (Exception e) {
 System.out.println("Exception: "+e.getMess age());
 }
 return result.toString();
 }

 public String prepareCredit(int value) {
 BigInteger result = new BigInteger("0");
 byte txBlock[] = new byte[2];
 txBlock[1] = (byte)(value%256); //Loads valu e into
 txBlock[0] = (byte)(value/256); //two separa te bytes for tx to card
 commAPDU.setLength(0);
 commAPDU.append(prepareCreditCommand);
 commAPDU.append(txBlock);
 commAPDU.append(prepareCreditLe);
 message.setMessage("Preparing for credit...") ;
 message.show();
 try {
 ResponseAPDU response = sendCommand(commAP DU);
 //Returns cryptographic challenge recei ved from card

 byte[] responseArray = {(byte)0x00, respon se.data()[0], response.data()[1],
 respon se.data()[2], response.data()[3],
 respon se.data()[4], response.data()[5],
 respon se.data()[6], response.data()[7]};
 //Prefixes number with zero byte before creating BigInteger to prevent
 //negative numbers from being created
 //(BigInteger uses two's-complement rep resentation)

 result = new BigInteger(responseArray);
 }
 catch (Exception e) {
 System.out.println("Exception: "+e.getMess age());
 }
 if (!inConversation)
 message.hide();
 return result.toString();
 }

 public boolean credit(String cResponse) {
 boolean result = true;
 BigInteger num256 = new BigInteger("256");
 BigInteger cResponseNum = new BigInteger(cRes ponse);
 byte txBlock[] = new byte[8];
 for (int i=7; i>=0; i--) { //Load response into eight separate bytes for tx to card
 txBlock[i] = (byte) cResponseNum.remainder (num256).intValue();
 cResponseNum = cResponseNum.divide(num256) ;
 }
 commAPDU.setLength(0);
 commAPDU.append(creditCommand);
 commAPDU.append(txBlock);
 message.setMessage("Crediting smartcard...");
 message.show();
 try {
 ResponseAPDU response = sendCommand(commAP DU);
 }
 catch (Exception e) {
 System.out.println("Exception: "+e.getMess age());
 result = false; //Return false if credit unsuccessful
 }
 if (!inConversation)
 message.hide();
 return result;
 }

E-commerce Site with Smartcard Payment Mechanism Appendix 6: Client Code

 Page 69

 public void sendPin(int pin) throws Exception {
 CommandAPDU sendPinAPDU = new CommandAPDU(50) ;
 sendPinAPDU.setLength(0);
 sendPinAPDU.append(sendPinCommand);
 sendPinAPDU.append((byte)(pin/256)); //Load s number into
 sendPinAPDU.append((byte)(pin%256)); //two separate bytes for tx to card
 initCard();
 System.out.println("> "+sendPinAPDU.toString());
 ResponseAPDU result = serv.sendCommandAPDU(se ndPinAPDU);
 System.out.println("< "+result.toString());
 if (result.sw1()==(byte)0x69 && result.sw2()= =(byte)0x82) {
 //PIN is incorrect (6982 response = Securi ty status not satisfied)
 if (inConversation)
 userPin=wrongPin; //Set cached PIN to error state
 pinMessage.setMessage("Incorrect PIN");
 pinMessage.show();
 throw(new Exception("Wrong PIN"));
 }
 }

 public void setPin(int pin) {
 message.setMessage("Setting PIN...");
 message.show();
 commAPDU.setLength(0);
 commAPDU.append(setPinCommand);
 commAPDU.append((byte)(pin/256)); //Loads n umber into
 commAPDU.append((byte)(pin%256)); //two sep arate bytes for tx to card
 try {
 sendCommand(commAPDU);
 }
 catch (Exception e) {
 System.out.println("Exception: "+e.getMess age());
 }
 if (!inConversation)
 message.hide();
 }

 public void setSecurity(boolean privateSec, bool ean privateOnce,
 boolean generalSec, bool ean generalOnce) {
 message.setMessage("Setting security levels.. .");
 message.show();
 commAPDU.setLength(0);
 commAPDU.append(setSecurityCommand);
 commAPDU.append((byte)(privateSec?1:0));
 commAPDU.append((byte)(privateOnce?1:0));
 commAPDU.append((byte)(generalSec?1:0));
 commAPDU.append((byte)(generalOnce?1:0));
 try {
 sendCommand(commAPDU);
 sendCommand(selectAPDU);
 }
 catch (Exception e) {
 System.out.println("Exception: "+e.getMess age());
 }
 if (!inConversation)
 message.hide();
 }

 public String getSecurity() {
 String result = "";
 commAPDU.setLength(0);
 commAPDU.append(getSecurityCommand);
 try {
 ResponseAPDU response = sendCommand(commAP DU);
 result = Integer.toString((int)response.da ta()[0]) +
 Integer.toString((int)response.da ta()[1]) +
 Integer.toString((int)response.da ta()[2]) +
 Integer.toString((int)response.da ta()[3]);
 }
 catch (Exception e) {
 System.out.println("Exception: "+e.getMess age());
 }
 return result;
 }

E-commerce Site with Smartcard Payment Mechanism Appendix 6: Client Code

 Page 70

 public boolean unblock(String code) {
 boolean result = true;
 BigInteger num256 = new BigInteger("256");
 BigInteger codeNum = new BigInteger(code);
 byte txBlock[] = new byte[8];
 for (int i=7; i>=0; i--) { //Loads code in to eight separate bytes for tx to card
 txBlock[i] = (byte) codeNum.remainder(num2 56).intValue();
 codeNum = codeNum.divide(num256);
 }
 commAPDU.setLength(0);
 commAPDU.append(unblockCommand);
 commAPDU.append(txBlock);
 message.setMessage("Attempting to unblock...");
 message.show();
 try {
 ResponseAPDU response = sendCommand(commAP DU);
 }
 catch (Exception e) {
 System.out.println("Exception: "+e.getMess age());
 result = false;
 }
 if (!inConversation)
 message.hide();
 return result;
 }

 public void beginConversation() {
 inConversation = true;
 userPin = unknownPin;
 message.setMessage("Communicating with smartc ard...");
 message.show();
 }

 public void endConversation() {
 userPin = unknownPin;
 message.hide();
 inConversation = false;
 }

 private void initCard() {
 if (!doneSetup) {
 try {
 message.setMessage("Please insert your smartcard...");
 message.show();
 SmartCard.start();
 cr = new CardRequest();
 cr.setWaitBehavior (CardRequest.ANYCARD);
 sc = SmartCard.waitForCard(cr);
 //Waits for a smartcard to become av ailable on any attached device

 if (sc != null) {
 serv = (PassThruCardService) sc.getC ardService(PassThruCardService.class,true);
 //Instantiates service to permit raw APDU's to be used for tx and rx

 System.out.println("> "+selectAPDU.t oString());
 ResponseAPDU result = serv.sendComma ndAPDU(selectAPDU);
 //Selects SmartID applet on card

 System.out.println("< "+result.toStr ing());
 doneSetup = true;
 } else {
 SmartCard.shutdown();
 }
 }
 catch (OpenCardPropertyLoadingException e) {
 System.out.println("OpenCardPropertyLoa dingException: " + e.getMessage());
 }
 catch (ClassNotFoundException e) {
 System.out.println("ClassNotFoundExcept ion: " + e.getMessage());
 }
 catch (CardTerminalException e) {
 System.out.println("CardTerminalExcepti on: " + e.getMessage());

E-commerce Site with Smartcard Payment Mechanism Appendix 6: Client Code

 Page 71

 }
 catch (CardServiceException e) {
 System.out.println("CardServiceExceptio n: " + e.getMessage());
 }
 message.hide();
 }
 }

 private ResponseAPDU sendCommand(CommandAPDU com mAPDU) throws Exception {
 ResponseAPDU result = new ResponseAPDU(50);
 initCard();
 try {
 System.out.println("> "+commAPDU.toString());
 //Shows data tx in Java console for deb ugging
 result = serv.sendCommandAPDU(commAPDU);
 //Sends APDU to card via PassThruCardSe rvice
 System.out.println("< "+result.toString()) ;
 //Shows data rx in Java console for deb ugging

 if (result.sw1()==(byte)0x6D && result.sw2 ()==(byte)0x00) {
 //'Wrong instruction code response' sug gests SmartID applet has become deselected
 System.out.println("> "+selectAPDU.toSt ring());
 result = serv.sendCommandAPDU(selectAPD U);
 //Selects SmartID applet on card
 System.out.println("> "+commAPDU.toStri ng());
 result = serv.sendCommandAPDU(commAPDU) ;
 //Repeats the command previously att empted
 }

 if (result.sw1()==(byte)0x69 && result.sw2 ()==(byte)0x82) {
 //'Security status not satisfied' respo nse i.e. card requires PIN to procede

 if (inConversation && userPin!=unknownP in && userPin!=wrongPin)
 sendPin(userPin);
 //Sends the cached PIN if in conv ersation

 if (!inConversation || userPin==unknown Pin)
 sendPin(getPin());
 //Obtains PIN from user and if no t cached and sends to card

 if (!(inConversation && userPin==wrongP in)) {
 System.out.println("> "+commAPDU.toS tring());
 result = serv.sendCommandAPDU(commAP DU);
 //Repeats the command previously attempted

 System.out.println("< "+result.toStr ing());
 }
 }

 if (result.sw1()==(byte)0x69 && result.sw2 ()==(byte)0x83) {
 //'Authentication method blocked' i.e. card is blocked
 pinMessage.setMessage("Card blocked");
 pinMessage.show();
 throw(new Exception("Card blocked"));
 }
 if (result.sw1()==(byte)0x9D && result.sw2 ()==(byte)0x1A) {
 //'Invalid signature' i.e. incorrect re sponse received by card for credit request
 pinMessage.setMessage("Corrupt server r esponse");
 pinMessage.show();
 throw(new Exception("Invalid signature"));
 }
 }
 catch (CardTerminalException e) {
 System.out.println("CardTerminalException: " + e.getMessage());
 throw e;
 }
 catch (Exception e) {throw e;}
 return result;
 }

E-commerce Site with Smartcard Payment Mechanism Appendix 6: Client Code

 Page 72

 private int getPin() {
 int result;
 PinRequest pinWindow = new PinRequest();
 pinWindow.show();
 while (pinWindow.getPin()==0) {
 //Wait for PIN to be entered in window
 }
 result=pinWindow.getPin();
 pinWindow.dispose();
 if (inConversation)
 userPin = result; //Cache the PIN if in co nversation
 return result;
 }

}

Appendix 6.3.2: MessageFrame class

import java.awt.*;
import java.io.*;

public class MessageFrame extends Frame {

 Label message;

 public boolean handleEvent(Event ev) {
 if (ev.id==Event.WINDOW_DESTROY) {
 this.hide();
 return true;
 }
 return super.handleEvent(ev);
 }

 public void setMessage(String text) {
 message.setText(text);
 }

 public MessageFrame() {
 GridLayout layout = new GridLayout(1,1);
 setLayout(layout);
 message = new Label();
 message.setFont(new Font("SansSerif",Font.ITA LIC,20));
 message.setAlignment(Label.CENTER);
 message.setSize(350,80);
 add(message);
 setTitle("SmartID");
 setSize((insets().left+insets().right+350),(i nsets().top+insets().bottom+100));
 setLocation(100,100);
 }
}

E-commerce Site with Smartcard Payment Mechanism Appendix 6: Client Code

 Page 73

Appendix 6.3.3: PinRequest Class

import java.awt.*;
import java.io.*;

public class PinRequest extends Frame {

 Label enterPinLabel;
 TextField userPin;
 Button okButton;
 int userPinNum = 0;

 public boolean handleEvent(Event ev) {
 if (ev.target==okButton && ev.id==Event.ACTIO N_EVENT) {
 //OK button clicked
 finish();
 return true;
 }
 if (ev.id==Event.WINDOW_DESTROY) {
 //Window closed
 finish();
 return true;
 }
 return super.handleEvent(ev);
 }

 public boolean keyDown(Event ev, int key) {
 if ((key==10)||(key==13)) {
 //Enter or Return pressed
 finish();
 return true;
 }
 else
 return false;
 }

 public int getPin() {
 return userPinNum;
 }

 private void finish() {
 userPinNum=(new Integer(userPin.getText())).i ntValue();
 //Sets variable containing PIN as entered by user (read by parent)
 this.hide();
 }

 public PinRequest() {
 GridBagLayout layout = new GridBagLayout();
 GridBagConstraints constraints = new GridBagC onstraints();
 setLayout(layout);
 constraints.gridx=0;
 constraints.gridy=0;
 enterPinLabel = new Label("Please enter PIN:");
 layout.setConstraints(enterPinLabel,constrain ts);
 add(enterPinLabel);
 userPin = new TextField("",4);
 constraints.gridx=GridBagConstraints.RELATIVE ;
 layout.setConstraints(userPin,constraints);
 add(userPin);
 okButton = new Button("OK");
 constraints.gridx=GridBagConstraints.RELATIVE ;
 layout.setConstraints(okButton,constraints);
 add(okButton);

 setTitle("Please enter PIN:");
 setSize((insets().left+insets().right+250),(i nsets().top+insets().bottom+100));
 setLocation(150,150);
 }
}

E-commerce Site with Smartcard Payment Mechanism Appendix 7: Smartcard Code

 Page 74

�������&
5<

����	����
����

constant
 RETURNUSERNAMEINS = 0x01 ;Retrieve profil e instructions
 RETURNPASSWORDINS = 0x02
 RETURNFORENAMEINS = 0x03
 RETURNSURNAMEINS = 0x04
 RETURNSTREETADDRESSINS = 0x05
 RETURNTOWNINS = 0x06
 RETURNCOUNTYINS = 0x07
 RETURNPOSTCODEINS = 0x08
 RETURNCCNUMBERINS = 0x09

 SETUSERNAMEINS = 0x11 ;Set profile ins tructions
 SETPASSWORDINS = 0x12
 SETFORENAMEINS = 0x13
 SETSURNAMEINS = 0x14
 SETSTREETADDRESSINS = 0x15
 SETTOWNINS = 0x16
 SETCOUNTYINS = 0x17
 SETPOSTCODEINS = 0x18
 SETCCNUMBERINS = 0x19

 DEBITINS = 0x20 ;Credit and debi t instructions
 PREPARECREDITINS = 0x21
 ATTEMPTCREDITINS = 0x22
 REPEATDEBITRESPONSEINS = 0x23

 RETURNBALANCEINS = 0x30 ;Balance instruc tions

 RECEIVEPININS = 0x40 ;Security instru ctions
 SETPININS = 0x41
 SETSECURITYINS = 0x42
 GETSECURITYINS = 0x43
 UNBLOCKINS = 0x44

 MAXATTEMPTS = 3 ;Maximum number of PIN attempts before blocking

static
 balance: word #0x0000 ;Balance initial ly zero
 pin: word #0x04D2 ;PIN initially s et to 1234 (in decimal)
 attempts: byte 0 ;Number of incor rect PIN attempts
 privateSec: byte 1 ;Require pin for private data (1=true, 0=false)
 privateOnce: byte 0 ; --once only (1 =true, 0=false)
 generalSec: byte 0 ;Require pin for general data (1=true, 0=false)
 generalOnce: byte 0 ; --once only (1 =true, 0=false)
 expResponse: byte[8] ;Expected respon se from last challenge
 lastResponse: byte[8] ;Last response g iven to credit challenge
 creditValue: word ;Top-up value fo r which last credit challenge created

 privateKey: byte[8] 0x12,0x34,0x56,0x78,0x90 ,0xAB,0xCD,0xEF
 unblockCode: byte[8] 0x11,0x22,0x33,0x44,0x55 ,0x66,0x77,0x88
 username: byte[30] "None set "
 password: byte[30] "None set "
 forename: byte[30] "None set "
 surname: byte[30] "None set "
 streetAddress: byte[30] "None set "
 town: byte[30] "None set "
 county: byte[30] "None set "
 postcode: byte[30] "None set "
 ccNumber: byte[30] "None set "

session ;All automatically set t o zero on reset
 criticalAccess: byte ;Access control for crit ical functions (1=granted, 0=denied)
 privateAccess: byte ;Access control for priv ate data (1=granted, 0=denied)
 generalAccess: byte ;Access control for gene ral data (1=granted, 0=denied)
 fieldName: word

E-commerce Site with Smartcard Payment Mechanism Appendix 7: Smartcard Code

 Page 75

code ;Point a t which execution starts on receipt of APDU

 cmpb apduIns, UNBLOCKINS ;Check I NS byte for Unblock instruction
 jumpeq unblockCard ;Jump to relevant code if received

 cmpb attempts, MAXATTEMPTS ;Check i f PIN has been entered wrong too many times
 jumpge blocked ;Bypass remaining code if true

 cmpb apduIns, RECEIVEPININS ;Ops with no access restrictions
 jumpeq receivePin
 cmpb apduIns, PREPARECREDITINS
 jumpeq prepareCredit
 cmpb apduIns, ATTEMPTCREDITINS
 jumpeq attemptCredit
 cmpb apduIns, REPEATDEBITRESPONSEINS
 jumpeq repeatDebitResponse

 loadn 1, generalSec ;Check if general
 cmpn 1, generalAccess ; security status satisfied
 jumplt notAllowed ; Bypass remaining code if false

 cmpb apduIns, RETURNBALANCEINS ;Ops with general access restrictions
 jumpeq returnBalance
 loada username
 cmpb apduIns, RETURNUSERNAMEINS
 jumpeq returnField
 cmpb apduIns, SETUSERNAMEINS
 jumpeq setField
 popw
 loada forename
 cmpb apduIns, RETURNFORENAMEINS
 jumpeq returnField
 cmpb apduIns, SETFORENAMEINS
 jumpeq setField
 popw
 loada surname
 cmpb apduIns, RETURNSURNAMEINS
 jumpeq returnField
 cmpb apduIns, SETSURNAMEINS
 jumpeq setField
 popw
 loada streetAddress
 cmpb apduIns, RETURNSTREETADDRESSINS
 jumpeq returnField
 cmpb apduIns, SETSTREETADDRESSINS
 jumpeq setField
 popw
 loada town
 cmpb apduIns, RETURNTOWNINS
 jumpeq returnField
 cmpb apduIns, SETTOWNINS
 jumpeq setField
 popw
 loada county
 cmpb apduIns, RETURNCOUNTYINS
 jumpeq returnField
 cmpb apduIns, SETCOUNTYINS
 jumpeq setField
 popw
 loada postcode
 cmpb apduIns, RETURNPOSTCODEINS
 jumpeq returnField
 cmpb apduIns, SETPOSTCODEINS
 jumpeq setField
 popw
 cmpb apduIns, GETSECURITYINS
 jumpeq getSecurity

 loadn 1, privateSec ;Check if private
 cmpn 1, privateAccess ; security status satisfied
 jumplt notAllowed ; Bypass remaining code if false

 loada password ;Ops with private access restrictions
 cmpb apduIns, RETURNPASSWORDINS
 jumpeq returnField
 cmpb apduIns, SETPASSWORDINS
 jumpeq setField
 popw

E-commerce Site with Smartcard Payment Mechanism Appendix 7: Smartcard Code

 Page 76

 loada ccNumber
 cmpb apduIns, RETURNCCNUMBERINS
 jumpeq returnField
 cmpb apduIns, SETCCNUMBERINS
 jumpeq setField
 popw

 cmpb criticalAccess, 1 ;Check if critical security status satisfied
 jumplt notAllowed ;Bypass remaining code if false

 cmpb apduIns, DEBITINS ;Ops with critical access restrictions
 jumpeq debitCard
 cmpb apduIns, SETPININS
 jumpeq setPin
 cmpb apduIns, SETSECURITYINS
 jumpeq setSecurity

 popw
 pushb 1 ;Command has bee n Case 1 (No command or response data present)
 CheckCase ;Inform card OS of case before returning
 exitstat #0x6D00 ;Return with Wro ng instruction code

notAllowed:
 pushb 1
 CheckCase
 exitstat #0x6982 ;Return with Sec urity status not satisfied

blocked:
 pushb 1
 CheckCase
 exitstat #0x6983 ;Return with Aut hentication method blocked

receivePin:
 pushb 3
 CheckCase
 incn 1, attempts ;Increment befor e comparison to prevent timely card removal
 loadn 2, apduBody
 cmpn 2, pin
 braeq correctPin
 exitstat #0x6982; ;Return with Sec urity status not satisfied
correctPin:
 setb attempts, 0
 setb generalAccess, 1
 setb privateAccess, 1
 setb criticalAccess, 1
 exitstat #0x9000;

setPin:
 call resetAccess
 pushb 3
 CheckCase
 loadn 2, apduBody ;Input: PIN{2}
 storen 2, pin
 exitstat #0x9000

setSecurity:
 call resetAccess
 pushb 3
 CheckCase
 loadn 4, apduBody ;Input: Security settings{4}
 storen 1, generalOnce
 storen 1, generalSec
 storen 1, privateOnce
 storen 1, privateSec
 exitstat #0x9000

E-commerce Site with Smartcard Payment Mechanism Appendix 7: Smartcard Code

 Page 77

getSecurity:
 call resetAccess
 pushb 2
 CheckCase
 loadn 1, privateSec
 loadn 1, privateOnce
 loadn 1, generalSec
 loadn 1, generalOnce
 storen 4, apduBody ;Output: Securit y settings{4}
 exitstatla #0x9000, 4

unblockCard:
 pushb 3
 CheckCase
 loadn 8, apduBody
 cmpn 8, unblockCode ;Input: Unblock code{2}
 braeq correctUnblock
 exitstat #0x6983 ;Return with Aut hentication method blocked
correctUnblock:
 setb attempts, 0
 exitstat #0x9000

returnBalance:
 call resetAccess
 pushb 2
 CheckCase
 loadn 2, balance
 storen 2, apduBody ;Output: Balance {2}
 exitstatla #0x9000, 2

returnField:
 call resetAccess
 pushb 2
 CheckCase
 loadin 30 ;Load data onto stack from location specified at top of stack
 storen 30, apduBody ;Output: Field d ata{30}
 exitstatla #0x9000, 30

setField:
 cmpb criticalAccess, 1
 jumplt notAllowed
 call resetAccess
 pushb 3
 CheckCase
 loadn 30, apduBody ;Input: Field da ta {30}
 storein 30 ;Store data in l ocation specified at top of stack
 exitstat #0x9000

debitCard:
 call resetAccess
 pushb 4
 CheckCase
 loadn 8, apduBody ;Input: Challeng e{6} Debit value{2}
 cmpn 2, balance ;Ensure balance is greater than debit value
 brage performDebit
 pushb 2
 CheckCase
 exitstat #0x6400 ;Return with Pro cess aborted - memory unchanged
performDebit:
 CommitThenProtect ;Start transacti on protection
 subn 2, balance ;Subtract debit value from balance
 loadn 8, privateKey ;Generate respon se
 xorn 8 ; by XORing priv ate key with (challenge,debit value)
 popn 8 ;Remove private key from stack to access result
 storen 8, lastResponse ;Store response
 Commit ;Commit transact ion
 loadn 8, lastResponse ;Output: Respons e{8}
 storen 8, apduBody
 exitstatla #0x9000, 8

E-commerce Site with Smartcard Payment Mechanism Appendix 7: Smartcard Code

 Page 78

repeatDebitResponse:
 pushb 2
 CheckCase
 loadn 8, lastResponse
 storen 8, apduBody ;Output: Respons e{8}
 exitstatla #0x9000, 8

prepareCredit:
 pushb 4
 CheckCase
 GetRandomNumber ;Place 8-byte ra ndom number at top of stack
 loadn 2, apduBody ;Input: Credit v alue{2} (add to top of stack)
 ;Challenge is no w top 8 bytes of stack (random#,credit value)
 storen 8, expResponse ;Store challenge in expResponse temporarily
 loadn 8, expResponse
 loadn 8, privateKey ;Calculate expec ted response
 xorn 8, expResponse ; by XORing priv ate key with challenge
 popn 8 ;Remove private key from stack to access challenge
 storen 2, creditValue ;Store credit va lue for last challenge created
 loadn 2, creditValue
 storen 8, apduBody ;Output: Challen ge{8}
 exitstatla #0x9000, 8

attemptCredit:
 pushb 3
 CheckCase
 pushw #0000 ;Check if credit value
 cmpn 2, creditValue ; is zero
 braeq creditFailed ;If true, no cha llenge has yet been generated
 loadn 8, apduBody ;Input: Response {8}
 cmpn 8, expResponse ;Check if respon se is correct
 braeq performCredit
creditFailed:
 exitstat #0x9D1A ;Return with Inv alid signature
performCredit:
 loadn 2, creditValue
 CommitThenProtect ;Start transacti on protection
 addn 2, balance ;Add credit valu e to balance
 pushw #0000 ;Set stored cred it value
 storen 2, creditValue ; to zero (preve nting replay)
 Commit
 exitstat #0x9000

resetAccess:
 setb criticalAccess, 0 ;Always reset critical access to denied after an op
 cmpb privateOnce, 1 ;Check i f OK to enter pin for private data once only
 braeq dontResetPrivate ; --Don 't reset private access if true
 setb privateAccess, 0 ; --Do reset private access if false
dontResetPrivate:
 cmpb generalOnce, 0 ;Check i f OK to enter pin for general data once only
 braeq dontResetGeneral ; --Don 't reset general access if true
 setb generalAccess, 0 ; --Do reset general access if false
dontResetGeneral:
 return

end

